CAREER: Algebraic structures in complex dynamics
职业:复杂动力学中的代数结构
基本信息
- 批准号:0747936
- 负责人:
- 金额:$ 55.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The simplest yet non-trivial complex dynamical systems are algebraic: iteration of noninvertible polynomials in one complex variable and, more generally, rational self-maps of a complex algebraic variety. Certain analytic quantities associated to these holomorphic systems have surprising connections to algebraic constructions. Examples from this project that illustrate the rich algebraic structures in a complex dynamical setting include: (1) the study of one-dimensional polynomials by their associated trees and the connection with valuations on the field of regular functions on the moduli space; (2) an analysis of regular self-maps on toric varieties, the resultant of such mappings, and connections with pluri-potential theory; (3) the structure of the moduli spaces of regular self-maps (e.g. of projective spaces) and their "dynamical" compactifications (describing how such systems degenerate) as algebraic varieties.One of the most familiar examples of such a dynamical system is Newton's method, an iterative algorithm for finding roots of polynomials, first introduced in calculus courses. Even for this famous and seemingly simple example, we have only recently begun to understand its structure, and its failure in general, using modern mathematical techniques. With Newton's method (its history, its applications, and recent studies) as a guide, I will pursue a collection of educational projects for students: (1) undergraduate research projects, with an emphasis on computer exploration of examples; (2) the development of an undergraduate course in dynamics, to present both the theory and recent applications; (3) two workshops for graduate students; and (4) regular student seminars. The research described above is designed to explore the interplay between chaotic dynamical systems (such as Newton's method and its generalizations) and any underlying algebraic structures. Such structures add an extra element of symmetry or regularity to a system which might otherwise seem intractable. The experts in these aspects of complex dynamical systems are concentrated in France, England, Japan, and the US (with smaller groups in Chile, Spain, Poland, and Germany, to name a few); with this project, the Principal Investigator will bring together some of these experts to work with students and clarify these connections between algebra and dynamics.
最简单但非平凡的复杂动力系统是代数的:一个复变量中不可逆多项式的迭代,更一般地,复代数族的有理自映射。与这些全纯系统相关的某些解析量与代数结构有着惊人的联系。这个项目的例子说明了复杂动力学环境中丰富的代数结构:(1)通过其伴随树研究一维多项式,以及与模空间上正则函数场上的赋值的联系;(2)环簇上正则自映射的分析,这种映射的结果,以及与多势理论的联系;(3)正则自映射(如射影空间)的模空间的结构及其“动力”紧化(描述这种系统如何退化)的代数变体。这种动力系统最常见的例子之一是牛顿方法,这是一种迭代算法,最初在微积分课程中介绍。即使对于这个著名的、看似简单的例子,我们也只是最近才开始使用现代数学技术来理解它的结构和总体上的失败。以牛顿方法(其历史、应用和最新研究)为指导,我将为学生进行一系列教育项目:(1)本科生研究项目,重点是实例的计算机探索;(2)开发一门本科生动力学课程,介绍该方法的理论和最新应用;(3)为研究生举办两次研讨会;以及(4)定期举行学生研讨会。上述研究旨在探索混沌动力系统(如牛顿方法及其推广)与任何潜在的代数结构之间的相互作用。这样的结构为一个原本看起来难以处理的系统增加了额外的对称性或规律性元素。复杂动力系统这些方面的专家集中在法国、英国、日本和美国(在智利、西班牙、波兰和德国有较小的小组,仅举几例);通过这个项目,首席研究员将把这些专家中的一些人聚集在一起,与学生一起工作,并澄清代数和动力学之间的这些联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura DeMarco其他文献
Uniform Manin-Mumford for a family of genus 2 curves
- DOI:
https://doi.org/10.4007/annals.2020.191.3.5 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Bounded height in families of dynamical systems
动力系统族中的有界高度
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Dragos Ghioca;Holly Krieger;Khoa Nguyen;Tom Tucker;Hexi Ye - 通讯作者:
Hexi Ye
Uniform Manin-Mumford for a family of genus 2 curves
属 2 曲线族的均匀 Manin-Mumford
- DOI:
10.4007/annals.2020.191.3.5 - 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Laura DeMarco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura DeMarco', 18)}}的其他基金
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
- 批准号:
2246630 - 财政年份:2023
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
Unlikely Intersections in Diophantine Geometry and Dynamics
丢番图几何与动力学中不太可能的交叉点
- 批准号:
2200981 - 财政年份:2022
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
2050037 - 财政年份:2020
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
1856103 - 财政年份:2019
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
Midwest Dynamical Systems Conferences 2019-2020
2019-2020 年中西部动力系统会议
- 批准号:
1856176 - 财政年份:2019
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
Complex Algebraic Dynamics and Geometry
复杂代数动力学和几何
- 批准号:
1600718 - 财政年份:2016
- 资助金额:
$ 55.97万 - 项目类别:
Continuing Grant
Midwest Dynamical Systems Conferences; Indianapolis, IN - October 21-23, 2016 ; (2nd Conference in 2017)
中西部动力系统会议;
- 批准号:
1600654 - 财政年份:2016
- 资助金额:
$ 55.97万 - 项目类别:
Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1517080 - 财政年份:2014
- 资助金额:
$ 55.97万 - 项目类别:
Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1302929 - 财政年份:2013
- 资助金额:
$ 55.97万 - 项目类别:
Continuing Grant
Holomorphic families of complex dynamical systems
复杂动力系统的全纯族
- 批准号:
0813675 - 财政年份:2007
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
- 批准号:
23K03033 - 财政年份:2023
- 资助金额:
$ 55.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 55.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 55.97万 - 项目类别:
Continuing Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 55.97万 - 项目类别:
Continuing Grant
Nonlinear systems: algebraic structures and integrability
非线性系统:代数结构和可积性
- 批准号:
EP/X018784/1 - 财政年份:2023
- 资助金额:
$ 55.97万 - 项目类别:
Research Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
- 批准号:
2747173 - 财政年份:2022
- 资助金额:
$ 55.97万 - 项目类别:
Studentship
Application of noncommutative algebraic structures to cryptology
非交换代数结构在密码学中的应用
- 批准号:
22K03397 - 财政年份:2022
- 资助金额:
$ 55.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 55.97万 - 项目类别:
Standard Grant














{{item.name}}会员




