Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
基本信息
- 批准号:2050037
- 负责人:
- 金额:$ 25.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary goal of this project is to explore connections between the dynamical theory of polynomials and rational functions of one variable and the theory of Diophantine geometry which studies arithmetic features of solutions to polynomial equations. Specifically, the principal investigator studies bifurcations and stability within algebraic families of these dynamical systems defined over the field of complex numbers and uses the results to address questions about height functions and rational points on arithmetic varieties, focused on intersection theory and counting problems. Even the simplest families of examples, such as the well-studied family of quadratic polynomials, exhibit complicated dynamical features that we have yet to understand. Similarly, there remain deep unanswered questions about the seemingly simple structure of torsion points on elliptic curves. This research combines methods from both complex analysis and arithmetic geometry.The principal investigator with her collaborators has developed new methods of proof incorporating tools from complex dynamics and non-archimedean analysis. The main objective of this project is to exploit these combined methods to address problems about height functions and some new problems about the dynamics of maps on the Riemann sphere, inspired by the arithmetic questions. The principal investigator is working towards: (1) uniform versions of Unlikely Intersection problems about algebraic dynamical systems; (2) a study of torsion points within a family of abelian varieties, to characterize which curves can intersect many points of ''small'' canonical height; (3) the Critical Orbit Conjecture, about the geometry of postcritically finite maps within the moduli space of rational maps; (4) the conjectured rationality of canonical heights for dynamical systems over function fields in characteristic zero, and connections to transcendence problems; and (5) equidistribution statements for families of maps and for families of elliptic curves. This research should have impact on multiple areas of mathematics, including number theory, geometry, and dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要目标是探索多项式动力学理论和一个变量的有理函数与研究多项式方程解的算术特征的丢番图几何理论之间的联系。具体来说,主要研究人员研究了在复数领域定义的这些动力系统的代数族内的分岔和稳定性,并利用结果来解决有关算术簇上的高度函数和有理点的问题,重点是交集理论和计数问题。 即使是最简单的例子系列,例如经过充分研究的二次多项式系列,也表现出我们尚未理解的复杂动力学特征。 同样,关于椭圆曲线上扭转点看似简单的结构,仍然存在一些尚未解答的深刻问题。这项研究结合了复分析和算术几何的方法。首席研究员和她的合作者结合了复动力学和非阿基米德分析的工具,开发了新的证明方法。 该项目的主要目标是受算术问题的启发,利用这些组合方法来解决有关高度函数的问题以及有关黎曼球上地图动力学的一些新问题。首席研究员正在致力于:(1)关于代数动力系统的不太可能相交问题的统一版本; (2) 对阿贝尔簇家族内的扭转点的研究,以表征哪些曲线可以与许多“小”规范高度的点相交; (3) 临界轨道猜想,关于有理映射模空间内的后临界有限映射的几何; (4) 特征零函数域上动力系统正则高度的猜想合理性,以及与超越问题的联系; (5) 地图族和椭圆曲线族的等分布陈述。 这项研究应该对数学的多个领域产生影响,包括数论、几何和动力学。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Common preperiodic points for quadratic polynomials
- DOI:10.3934/jmd.2022012
- 发表时间:2019-11
- 期刊:
- 影响因子:1.1
- 作者:Laura Demarco;Holly Krieger;Hexi Ye
- 通讯作者:Laura Demarco;Holly Krieger;Hexi Ye
Variation of canonical height and equidistribution
- DOI:10.1353/ajm.2020.0012
- 发表时间:2017-01
- 期刊:
- 影响因子:1.7
- 作者:Laura Demarco;Niki Myrto Mavraki
- 通讯作者:Laura Demarco;Niki Myrto Mavraki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura DeMarco其他文献
Uniform Manin-Mumford for a family of genus 2 curves
- DOI:
https://doi.org/10.4007/annals.2020.191.3.5 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Bounded height in families of dynamical systems
动力系统族中的有界高度
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Dragos Ghioca;Holly Krieger;Khoa Nguyen;Tom Tucker;Hexi Ye - 通讯作者:
Hexi Ye
Uniform Manin-Mumford for a family of genus 2 curves
属 2 曲线族的均匀 Manin-Mumford
- DOI:
10.4007/annals.2020.191.3.5 - 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Laura DeMarco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura DeMarco', 18)}}的其他基金
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
- 批准号:
2246630 - 财政年份:2023
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Unlikely Intersections in Diophantine Geometry and Dynamics
丢番图几何与动力学中不太可能的交叉点
- 批准号:
2200981 - 财政年份:2022
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
1856103 - 财政年份:2019
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Midwest Dynamical Systems Conferences 2019-2020
2019-2020 年中西部动力系统会议
- 批准号:
1856176 - 财政年份:2019
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Complex Algebraic Dynamics and Geometry
复杂代数动力学和几何
- 批准号:
1600718 - 财政年份:2016
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
Midwest Dynamical Systems Conferences; Indianapolis, IN - October 21-23, 2016 ; (2nd Conference in 2017)
中西部动力系统会议;
- 批准号:
1600654 - 财政年份:2016
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1517080 - 财政年份:2014
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1302929 - 财政年份:2013
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
CAREER: Algebraic structures in complex dynamics
职业:复杂动力学中的代数结构
- 批准号:
0747936 - 财政年份:2008
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
Holomorphic families of complex dynamical systems
复杂动力系统的全纯族
- 批准号:
0813675 - 财政年份:2007
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Unlikely Intersections in Diophantine Geometry and Dynamics
丢番图几何与动力学中不太可能的交叉点
- 批准号:
2200981 - 财政年份:2022
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Algebraic and arithmetic dynamics, Diophantine Geometry, and related topics
代数和算术动力学、丢番图几何及相关主题
- 批准号:
20K14300 - 财政年份:2020
- 资助金额:
$ 25.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
1856103 - 财政年份:2019
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
New Directions in Homogeneous Dynamics and Diophantine Approximation
齐次动力学和丢番图近似的新方向
- 批准号:
1600814 - 财政年份:2016
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
Arithmetic 2015: Elliptic Curves, Diophantine Geometry, and Dynamics
算术 2015:椭圆曲线、丢番图几何和动力学
- 批准号:
1517886 - 财政年份:2015
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Conference on "Diophantine Geometry and Arithmetic Dynamics"
“丢番图几何与算术动力学”会议
- 批准号:
1203983 - 财政年份:2012
- 资助金额:
$ 25.36万 - 项目类别:
Standard Grant
Old and new techniques in homogeneous dynamics and Diophantine approximation: quantitative nondivergence, Schmidt games, random walks
齐次动力学和丢番图近似中的新旧技术:定量非散度、施密特游戏、随机游走
- 批准号:
1101320 - 财政年份:2011
- 资助金额:
$ 25.36万 - 项目类别:
Continuing Grant
Diophantine geometry and arithmetic dynamics
丢番图几何与算术动力学
- 批准号:
371987-2009 - 财政年份:2011
- 资助金额:
$ 25.36万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Large Group Actions, Rigidity, and Diophantine geometry
大群体作用动力学、刚性和丢番图几何
- 批准号:
EP/H000097/1 - 财政年份:2010
- 资助金额:
$ 25.36万 - 项目类别:
Research Grant
Diophantine geometry and arithmetic dynamics
丢番图几何与算术动力学
- 批准号:
371987-2009 - 财政年份:2010
- 资助金额:
$ 25.36万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




