Moduli spaces of complex dynamical systems
复杂动力系统的模空间
基本信息
- 批准号:1302929
- 负责人:
- 金额:$ 30.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polynomials and rational functions of a single variable provide basic examples of non-invertible dynamical systems. Even the simplest families of examples exhibit complicated dynamical behavior; the most famous is the family of complex quadratic polynomials, where the Mandelbrot set continues to baffle researchers. The primary goal of this project is to explore the dynamical moduli spaces of polynomials and rational functions. The projects proposed (both the questions and the proposed solution strategies) combine ingredients from complex analysis and arithmetic or algebraic geometry. In one direction, the PI aims to study the distribution of postcritically-finite rational maps within the moduli space. In joint work with Matthew Baker, the PI has formulated a dynamical analogue to the Andre-Oort conjecture in arithmetic geometry. Questions of this type are not only analogies: for example, the PI aims to use dynamical techniques to recover a result by Masser and Zannier about torsion points in families of elliptic curves. The main tools are recent developments in analysis and dynamics on a Berkovich analyticspace. In a slightly different direction, the PI is studying bifurcation sets and bifurcation measures in distinguished subvarieties within the moduli space. Here the techniques are predominantly analytic. New questions have stemmed from experimental work, using the new computer program Dynamics Explorer developed by Boyd & Boyd. The PI is also interested in classical problems about the existence and classification of symmetries of rational functions. In the last five or ten years, "algebraic dynamics" has become an extremely active area of research; the questions have become more refined as senior researchers enter the subject with very different backgrounds and we uncover connections to many areas of mathematics. Roughly speaking, algebraic dynamics is the study of dynamical systems that preserve an underlying algebraicstructure. Such systems arise naturally in applications (for example, the one-dimensional logistic family is algebraic), and they play a role in the analysis of arithmetic objects studied by number theorists (for example, in defining height functions associated to arithmetic varieties). The PI is actively involved in the exchange of mathematical ideas between number theorists and dynamicists. On one hand, her questions are about the fundamental stability of dynamical systems: under what conditions is a system insensitive to small perturbations? On the other hand, the special class of dynamical systems she studies exhibits a rich algebraic structure, bringing dynamical features into a long history of arithmetic geometry. Finally, the project has an experimental component that works very well with students and junior researchers; the PI is actively involved in research projects and training programs for undergraduate, graduate, and postdoctoral researchers.
单变量多项式和有理函数提供了不可逆动力系统的基本例子。即使是最简单的样本族也表现出复杂的动力学行为;最著名的是复杂的二次多项式族,其中的Mandelbrot集继续困扰着研究人员。这个项目的主要目标是探索多项式和有理函数的动态模空间。建议的项目(问题和建议的解决策略)结合了复杂分析和算术或代数几何的成分。在一个方向上,PI的目的是研究模空间中后临界有限有理映射的分布。在与马修·贝克的合作中,PI制定了一个动态模拟算术几何中的安德烈-奥尔特猜想。这类问题不仅仅是类比:例如,PI旨在使用动力学技术来恢复Masser和Zannier关于椭圆曲线族中的扭点的结果。主要工具是Berkovich分析空间上的分析和动力学方面的最新发展。在一个略有不同的方向上,PI正在研究模空间内不同亚种的分支集和分叉度量。这里的技术主要是分析性的。使用博伊德和博伊德开发的新的计算机程序Dynamic Explorer,实验工作产生了新的问题。PI还对关于有理函数对称性的存在性和分类的经典问题感兴趣。在过去的五年或十年里,“代数动力学”已经成为一个非常活跃的研究领域;随着资深研究人员以非常不同的背景进入该学科,以及我们发现与数学的许多领域的联系,这些问题变得更加精致。粗略地说,代数动力学是研究保持基本代数结构的动力系统。这样的系统在应用中自然出现(例如,一维逻辑斯族是代数的),它们在数论家研究的算术对象的分析中发挥作用(例如,定义与算术变种相关的高度函数)。国际数学家协会积极参与数字理论家和动态学家之间的数学思想交流。一方面,她的问题是关于动力系统的基本稳定性:在什么条件下系统对微小的扰动不敏感?另一方面,她研究的这类特殊的动力系统显示出丰富的代数结构,将动力特征带入了算术几何的悠久历史中。最后,该项目有一个与学生和初级研究人员合作非常好的实验部分;PI积极参与本科生、研究生和博士后研究人员的研究项目和培训计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura DeMarco其他文献
Uniform Manin-Mumford for a family of genus 2 curves
- DOI:
https://doi.org/10.4007/annals.2020.191.3.5 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Bounded height in families of dynamical systems
动力系统族中的有界高度
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Dragos Ghioca;Holly Krieger;Khoa Nguyen;Tom Tucker;Hexi Ye - 通讯作者:
Hexi Ye
Uniform Manin-Mumford for a family of genus 2 curves
属 2 曲线族的均匀 Manin-Mumford
- DOI:
10.4007/annals.2020.191.3.5 - 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Laura DeMarco;Holly Krieger;Hexi Ye - 通讯作者:
Hexi Ye
Laura DeMarco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura DeMarco', 18)}}的其他基金
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
- 批准号:
2246630 - 财政年份:2023
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Unlikely Intersections in Diophantine Geometry and Dynamics
丢番图几何与动力学中不太可能的交叉点
- 批准号:
2200981 - 财政年份:2022
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
2050037 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Complex Dynamics and Diophantine Geometry
复杂动力学和丢番图几何
- 批准号:
1856103 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Midwest Dynamical Systems Conferences 2019-2020
2019-2020 年中西部动力系统会议
- 批准号:
1856176 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Complex Algebraic Dynamics and Geometry
复杂代数动力学和几何
- 批准号:
1600718 - 财政年份:2016
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Midwest Dynamical Systems Conferences; Indianapolis, IN - October 21-23, 2016 ; (2nd Conference in 2017)
中西部动力系统会议;
- 批准号:
1600654 - 财政年份:2016
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1517080 - 财政年份:2014
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
CAREER: Algebraic structures in complex dynamics
职业:复杂动力学中的代数结构
- 批准号:
0747936 - 财政年份:2008
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Holomorphic families of complex dynamical systems
复杂动力系统的全纯族
- 批准号:
0813675 - 财政年份:2007
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Complex dynamics via tropical moduli spaces
通过热带模空间的复杂动力学
- 批准号:
EP/X026612/1 - 财政年份:2023
- 资助金额:
$ 30.3万 - 项目类别:
Research Grant
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
- 批准号:
RGPIN-2022-05387 - 财政年份:2022
- 资助金额:
$ 30.3万 - 项目类别:
Discovery Grants Program - Individual
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 30.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interactions of Derived Moduli Spaces and Gerbes with Elliptic Genera in Complex Geometry
复杂几何中导出模空间和Gerbes与椭圆属的相互作用
- 批准号:
376202359 - 财政年份:2017
- 资助金额:
$ 30.3万 - 项目类别:
Research Fellowships
Moduli spaces of certain real and complex algebraic varietes
某些实数和复数代数变体的模空间
- 批准号:
512292-2017 - 财政年份:2017
- 资助金额:
$ 30.3万 - 项目类别:
University Undergraduate Student Research Awards
Geometry of Deformation and Moduli Spaces of Complex Manifolds
复流形的变形几何和模空间
- 批准号:
1510216 - 财政年份:2015
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Moduli spaces of complex dynamical systems
复杂动力系统的模空间
- 批准号:
1517080 - 财政年份:2014
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant














{{item.name}}会员




