Parabolic Dynamics

抛物线动力学

基本信息

  • 批准号:
    0800673
  • 负责人:
  • 金额:
    $ 35.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

We will study quantitative equidistribution and other ergodic properties, such as weak mixing/mixing, for several examples of parabolic flows, in particular billiard flows in polygons and reparametrizations of nilpotent flows. In the past several years, we have developed a method to investigate the ergodic theoretical properties of parabolic flows based on the study of invariant distributions (distributional obstructions to the existence of solutions of cohomological equations), on the Gottschalk-Hedlund theorem and on the construction of a renormalization dynamics. We have succesfully applied our ideas in several papers where we have proved bounds on the speed of ergodicity in a few fundamental cases. We intend to test our method further in other more challenging cases, which so far have been out of reach mainly beacuse no renormalization scheme is available. The problems that we intend to attack include longstanding open questions such as the question on weak mixing on invariant surfaces for flows in rational polygons and the question on the speed of (unique) ergodicity for nilflows.Our long term goal is to contribute to develop a theory on a class of weakly chaotic dynamical systems, called parabolic, which, despite some recent progress, are not yet sufficiently well understood. Parabolic motion is characterized by a power-law divergence (for instance linear, quadratic, etc.) of nearby trajectories with time. It represents an intermediate situation between strongly chaotic motion (exponentially fast divergence) and regular motion (no or extremely slow divergence). Motions at the extreme ends of the spectrum are comparatevely much better understood than parabolic motion. We will study specific questions on the dynamics of specific classes of examples, chosen for their fundamental nature and for their relevance in applications to physics, to geometry and to number theory. For instance, certain parabolic systems are relevant in the study of celestial mechanics, or as a testing ground for conjectures on the relation between classical and quantum mechanics (quantum chaos), other systems have deep connections to questions in number theory. Advances in our understanding of these systems will improve our fundamental knowledge of dynamical phenomena which are relevant for the natural sciences and for technological applications.
我们将研究一些抛物流的定量均匀分布和其他遍历性质,如弱混合/混合,特别是多边形的台球流和幂零流的再参数化。在过去的几年里,我们发展了一种研究抛物流遍历理论性质的方法,该方法基于不变分布(对上同调方程解存在性的分布障碍)、Gottschalk-Hedlund定理和重整化动力学的构造。我们已经在几篇论文中成功地应用了我们的想法,在这些论文中,我们证明了一些基本情况下遍历速度的界限。我们打算在其他更具挑战性的情况下进一步测试我们的方法,这些情况到目前为止还无法实现,主要是因为没有可用的重整化方案。我们打算解决的问题包括长期存在的开放问题,如在合理多边形中流动的不变表面上的弱混合问题和零流的(唯一)遍历速度问题。我们的长期目标是为发展一类弱混沌动力系统的理论做出贡献,称为抛物线系统,尽管最近取得了一些进展,但尚未得到充分的理解。抛物运动的特征是附近轨迹随时间的幂律发散(例如线性、二次等)。它代表了一种介于强混沌运动(指数快速散度)和规则运动(无散度或极慢散度)之间的中间状态。相对而言,光谱极端端的运动比抛物线运动更容易理解。我们将研究特定类别的例子的动力学的特定问题,选择它们的基本性质以及它们在物理,几何和数论应用中的相关性。例如,某些抛物系统与天体力学的研究有关,或者作为对经典力学和量子力学(量子混沌)之间关系的猜想的试验场,其他系统与数论中的问题有着深刻的联系。我们对这些系统的理解的进步将提高我们对与自然科学和技术应用相关的动力学现象的基本知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giovanni Forni其他文献

MP72-17 ROBOT-ASSISTED PARTIAL NEPHRECTOMY FOR COMPLEX CASES (PADUA SCORE = 10): RESULTS FROM A MULTICENTER EXPERIENCE AT THREE HIGH-VOLUME CENTERS
  • DOI:
    10.1016/j.juro.2017.02.2253
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Giovanni Lughezzani;Nicolo' Buffi;Giuliana Lista;Davide Maffei;Giovanni Forni;Nicola Fossati;Alessandro Larcher;Massimo Lazzeri;Alberto Saita;Paolo Casale;Giorgio Guazzoni;Jim Porter;Alex Mottrie
  • 通讯作者:
    Alex Mottrie
Characteristics, Outcomes, and Long-Term Survival of Patients With Heart Failure Undergoing Inpatient Cardiac Rehabilitation
  • DOI:
    10.1016/j.apmr.2021.10.014
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Domenico Scrutinio;Pietro Guida;Andrea Passantino;Simonetta Scalvini;Maurizio Bussotti;Giovanni Forni;Raffaella Vaninetti;Maria Teresa La Rovere
  • 通讯作者:
    Maria Teresa La Rovere
PD19-01 ACTIVE SURVEILLANCE FOR NON-MUSCLE INVASIVE BLADDER CANCER (NMIBC): RESULT FROM BLADDER CANCER ITALIAN ACTIVE SURVEILLANCE (BIAS) PROJECT.
  • DOI:
    10.1016/j.juro.2017.02.874
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rodolfo Hurle;Massimo Lazzeri;Giovanni Lughezzani;NicolòMaria Buffi;Alberto Saita;Luisa Pasini;Silvia Zandegiacomo;Alessio Benetti;Giovanni Forni;Piergiuseppe Colombo;Roberto Peschechera;Paolo Casale;Giuliana Lista;Pasquale Cardone;Giorgio Guazzoni
  • 通讯作者:
    Giorgio Guazzoni
Homology and cohomology with compact supports forq-convex spaces
Incremental prognostic value of functional impairment assessed by 6-min walking test for the prediction of mortality in heart failure
通过 6 分钟步行测试评估功能障碍的增量预后价值,以预测心力衰竭的死亡率
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    D. Scrutinio;Pietro Guida;M. L. La Rovere;Laura Adelaide Dalla Vecchia;Giovanni Forni;R. Raimondo;S. Scalvini;A. Passantino
  • 通讯作者:
    A. Passantino

Giovanni Forni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giovanni Forni', 18)}}的其他基金

Effective Ergodic Theory: Parabolic and Hyperbolic
有效的遍历理论:抛物线和双曲线
  • 批准号:
    2154208
  • 财政年份:
    2022
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
Beyond Renormalization in Parabolic Dynamics
抛物线动力学中的重正化之外
  • 批准号:
    1600687
  • 财政年份:
    2016
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Continuing Grant
Ergodic Theory of Parabolic Flows
抛物线流的遍历理论
  • 批准号:
    1201534
  • 财政年份:
    2012
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Continuing Grant
FRG: Rational billiards and geometry and dynamics on Teichmuller Space
FRG:Teichmuller 空间上的理性台球以及几何和动力学
  • 批准号:
    0244463
  • 财政年份:
    2003
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Dynamics of solutions of nonlinear parabolic equations and front propagation phenomena
非线性抛物方程解的动力学和前传播现象
  • 批准号:
    21H00995
  • 财政年份:
    2021
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
  • 批准号:
    20H00118
  • 财政年份:
    2020
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Beyond Renormalization in Parabolic Dynamics
抛物线动力学中的重正化之外
  • 批准号:
    1600687
  • 财政年份:
    2016
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Continuing Grant
New developements of the regularity theory on the solutions to the Liouville-Gelfand type problems and the related parabolic dynamics
求解Liouville-Gelfand型问题及相关抛物动力学的正则理论的新进展
  • 批准号:
    24654043
  • 财政年份:
    2012
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on stationary patterns and dynamics of parabolic partial differential equations arising in chemistry and biology
化学和生物学中抛物型偏微分方程的平稳模式和动力学研究
  • 批准号:
    21740116
  • 财政年份:
    2009
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Parabolic dynamics
抛物线动力学
  • 批准号:
    326748-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Discovery Grants Program - Individual
Parabolic dynamics
抛物线动力学
  • 批准号:
    326748-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Discovery Grants Program - Individual
Parabolic dynamics
抛物线动力学
  • 批准号:
    326748-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Discovery Grants Program - Individual
Long-Time Dynamics and Regularity Properties of Strongly Coupled Parabolic Systems
强耦合抛物线系统的长期动力学和规律性特性
  • 批准号:
    0305219
  • 财政年份:
    2003
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamics in Almost Periodic Parabolic Equations and Coupled Map Lattices
数学科学:近周期抛物线方程和耦合映射格子的动力学
  • 批准号:
    9402945
  • 财政年份:
    1994
  • 资助金额:
    $ 35.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了