Ergodic Theory of Parabolic Flows
抛物线流的遍历理论
基本信息
- 批准号:1201534
- 负责人:
- 金额:$ 33.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems can roughly be classified according to the speed of divergence of nearby trajectories. Systems with sub-exponential, polynomial divergence of nearby orbits are often called parabolic. Parabolic dynamical systems arise in many mathematical models of scientific phenomena and in applications of dynamical systems to other branches of mathematics, in particular to number theory and geometry. The main long term goal of the research is to explore how far the ideas and methods developed in the study of the above-mentioned systems, based on renormalization and harmonic analysis, can be generalized towards a theory of parabolic dynamics. In the near future, Forni plans to organize his research around three main themes: ergodic theory on finite-area translation surfaces, compact and non-compact, and of billiards in polygons; ergodic theory of smooth time-changes of nilflows and horocycle flows; renormalization and quantitative equidistribution of (higher-step) nilflows and Weyl sums. Among the questions considered are long-standing open problems such as ergodicity of billiards in polygons, the spectral type of smooth time-changes of horocycle flows and optimal bounds on Weyl sums.The proponent's research is in the field of dynamical systems, that is, the study of motion of a deterministic system with time. The most classical example is the motion of the planets, but dynamical systems arise in all area of sciences, for instance in physics, biology, economics. In addition, the methods of dynamical systems can be applied to study problems in other fields of mathematics, in particular in geometry and number theory, as it has been done very successfully in recent decades as dynamical systems has moved closer and closer to the core of pure mathematical research (without abandoning its original strong connection to natural sciences and to applied mathematics). In dynamical systems there is a well-established theory of chaos which applies to systems whose nearby trajectories diverge exponentially fast with time (the weather is perhaps the most famous example.) At the other end of the spectrum, there is regular motion, characterized by trajectories that move all together. The proponent's goal is to advance fundamental research on the intermediate case of weakly chaotic systems, that is, systems that have some measure of chaotic behavior, but whose nearby trajectories diverge at most polynomially fast with time. The motion of an idealized billiard ball on a polygonal table is an example. Systems of this kind, called parabolic, are especially important in applications to geometry, number theory and to mathematical models coming from several branches of physics: solid-state physics, celestial mechanics, statistical mechanics. For instance, in recent years in number theory and, to a lesser extent, in geometry many questions have been reformulated (sometimes solved) as questions on the dynamics of certain parabolic flows. In physics, the motion of an electron on the the so-called Fermi surface of an atom (solid-state physics), the motion of planets near a singularity (celestial mechanics), the motion of an atom in a box (statistical mechanics) are related to parabolic systems. This project also has an important training component with the goal of forming researchers with wide mathematical knowledge.
动力系统可以根据附近轨迹的散度速度粗略地分类。具有次指数、多项式散度的系统常被称为抛物线系统。抛物动力系统出现在许多科学现象的数学模型中,也出现在动力系统在其他数学分支,特别是数论和几何中的应用中。研究的主要长期目标是探索在上述系统的研究中发展起来的思想和方法,基于重整化和谐波分析,可以推广到抛物动力学理论的程度。在不久的将来,Forni计划围绕三个主要主题组织他的研究:有限面积平移曲面的遍历理论,紧实和非紧实,以及多边形台球;零流和环流光滑时变的遍历理论(高阶)nilflow和Weyl和的重整化和定量均分。其中考虑的问题是长期悬而未决的问题,如多边形台球的遍历性,环流的光滑时变的谱型和Weyl和的最优界。倡议者的研究领域是动力系统,即研究确定性系统随时间的运动。最经典的例子是行星的运动,但动力系统出现在所有科学领域,例如物理学、生物学、经济学。此外,动力系统的方法可以应用于研究其他数学领域的问题,特别是几何和数论,因为近几十年来,随着动力系统越来越接近纯数学研究的核心(而不放弃其与自然科学和应用数学的原始强烈联系),它已经做得非常成功。在动力系统中,有一个完善的混沌理论,适用于其附近轨迹随时间呈指数级快速发散的系统(天气可能是最著名的例子)。在光谱的另一端,有规律的运动,其特征是轨迹一起运动。支持者的目标是推进弱混沌系统中间情况的基础研究,即系统具有一定程度的混沌行为,但其附近轨迹最多随时间以多项式速度发散。一个理想的台球在多边形桌上的运动就是一个例子。这种系统被称为抛物线,在几何学、数论和来自物理学几个分支的数学模型的应用中尤为重要:固体物理学、天体力学、统计力学。例如,近年来,在数论和较小程度的几何中,许多问题被重新表述(有时被解决)为某些抛物线流动的动力学问题。在物理学中,电子在所谓的原子费米表面上的运动(固态物理学),行星在奇点附近的运动(天体力学),盒子里原子的运动(统计力学)都与抛物线系统有关。这个项目还有一个重要的训练组成部分,目标是培养具有广泛数学知识的研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giovanni Forni其他文献
MP72-17 ROBOT-ASSISTED PARTIAL NEPHRECTOMY FOR COMPLEX CASES (PADUA SCORE = 10): RESULTS FROM A MULTICENTER EXPERIENCE AT THREE HIGH-VOLUME CENTERS
- DOI:
10.1016/j.juro.2017.02.2253 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Giovanni Lughezzani;Nicolo' Buffi;Giuliana Lista;Davide Maffei;Giovanni Forni;Nicola Fossati;Alessandro Larcher;Massimo Lazzeri;Alberto Saita;Paolo Casale;Giorgio Guazzoni;Jim Porter;Alex Mottrie - 通讯作者:
Alex Mottrie
Characteristics, Outcomes, and Long-Term Survival of Patients With Heart Failure Undergoing Inpatient Cardiac Rehabilitation
- DOI:
10.1016/j.apmr.2021.10.014 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Domenico Scrutinio;Pietro Guida;Andrea Passantino;Simonetta Scalvini;Maurizio Bussotti;Giovanni Forni;Raffaella Vaninetti;Maria Teresa La Rovere - 通讯作者:
Maria Teresa La Rovere
PD19-01 ACTIVE SURVEILLANCE FOR NON-MUSCLE INVASIVE BLADDER CANCER (NMIBC): RESULT FROM BLADDER CANCER ITALIAN ACTIVE SURVEILLANCE (BIAS) PROJECT.
- DOI:
10.1016/j.juro.2017.02.874 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Rodolfo Hurle;Massimo Lazzeri;Giovanni Lughezzani;NicolòMaria Buffi;Alberto Saita;Luisa Pasini;Silvia Zandegiacomo;Alessio Benetti;Giovanni Forni;Piergiuseppe Colombo;Roberto Peschechera;Paolo Casale;Giuliana Lista;Pasquale Cardone;Giorgio Guazzoni - 通讯作者:
Giorgio Guazzoni
Homology and cohomology with compact supports forq-convex spaces
- DOI:
10.1007/bf01766303 - 发表时间:
1991-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Giovanni Forni - 通讯作者:
Giovanni Forni
Incremental prognostic value of functional impairment assessed by 6-min walking test for the prediction of mortality in heart failure
通过 6 分钟步行测试评估功能障碍的增量预后价值,以预测心力衰竭的死亡率
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.6
- 作者:
D. Scrutinio;Pietro Guida;M. L. La Rovere;Laura Adelaide Dalla Vecchia;Giovanni Forni;R. Raimondo;S. Scalvini;A. Passantino - 通讯作者:
A. Passantino
Giovanni Forni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giovanni Forni', 18)}}的其他基金
Effective Ergodic Theory: Parabolic and Hyperbolic
有效的遍历理论:抛物线和双曲线
- 批准号:
2154208 - 财政年份:2022
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Beyond Renormalization in Parabolic Dynamics
抛物线动力学中的重正化之外
- 批准号:
1600687 - 财政年份:2016
- 资助金额:
$ 33.5万 - 项目类别:
Continuing Grant
FRG: Rational billiards and geometry and dynamics on Teichmuller Space
FRG:Teichmuller 空间上的理性台球以及几何和动力学
- 批准号:
0244463 - 财政年份:2003
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
- 批准号:
22H01134 - 财政年份:2022
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effective Ergodic Theory: Parabolic and Hyperbolic
有效的遍历理论:抛物线和双曲线
- 批准号:
2154208 - 财政年份:2022
- 资助金额:
$ 33.5万 - 项目类别:
Standard Grant
Potential theory for parabolic equations and related function spaces
抛物线方程及相关函数空间的势理论
- 批准号:
19K03523 - 财政年份:2019
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity theory for elliptic and parabolic free boundary problems
椭圆和抛物线自由边界问题的正则理论
- 批准号:
417627993 - 财政年份:2019
- 资助金额:
$ 33.5万 - 项目类别:
Research Grants
A Study on Complex Ginzburg-Landau Equations Based on the Theory of Parabolic Equations
基于抛物型方程理论的复Ginzburg-Landau方程研究
- 批准号:
19J12431 - 财政年份:2019
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Study of parabolic systems with discontinuous nonlinearities arising in game theory
博弈论中具有不连续非线性的抛物线系统的研究
- 批准号:
16K05226 - 财政年份:2016
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Potential theory for parabolic equations and the functional analysis
抛物方程势论和泛函分析
- 批准号:
15K04934 - 财政年份:2015
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developements of the regularity theory on the solutions to the Liouville-Gelfand type problems and the related parabolic dynamics
求解Liouville-Gelfand型问题及相关抛物动力学的正则理论的新进展
- 批准号:
24654043 - 财政年份:2012
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on asymmetry and anisotropy in blow-up theory for nonlinear parabolic equations
非线性抛物方程爆炸理论中的不对称性和各向异性研究
- 批准号:
23654064 - 财政年份:2011
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Potential theory for parabolic equations with functional analysis
泛函分析抛物线方程的势理论
- 批准号:
23540220 - 财政年份:2011
- 资助金额:
$ 33.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




