Studies on Dispersive and Wave Equations

色散方程和波动方程的研究

基本信息

项目摘要

The purpose of this project is to improve our understanding of the effect of complicated background geometry on solutions to certain wave or dispersive equations. The geometry may result, for example, from the introduction of a boundary, from the influence of a nonflat metric, or from consideration of nonhomogeneous materials. One major aspect of this project is to study global-in-time measures of dispersion, such as localized energy estimates and Strichartz estimates, for variable coefficient wave equations. As compared to the flat cases, one encounters additional difficulties that arise, for instance, because of the focusing of Hamiltonian rays, trapped rays, and the possibility of eigenfunctions or resonances. A particular example of interest is to study the wave equation on nonflat solutions to Einstein's equations, such as the Schwarzschild space-time. A second major component of this project is to study the long-time existence of solutions to certain nonlinear wave or elastic wave equations. Of special interest here are problems in anisotropic elasticity or existence questions for nonlinear wave equations in exterior domains where certain invariances, which are typically used to prove long-time existence, are not available.A class of fundamental open questions in theoretical physics revolves around the stability of solutions to Einstein's equations. Namely, if the universe starts close to a certain known solution, one might seek to prove that it remains close to that solution for all later times. The only known rigorous proofs of stability are for the so-called flat solution. It is believed that a good understanding of the dispersive nature of wave equations will play an essential role in any proof of stability, and the first set of questions described above seeks to provide some insights into this. Understanding the lifespan of solutions to partial differential equations is of basic interest. The objective is to estimate the amount of time that a solution may exist prior to, say, becoming infinitely large (blow-up phenomena). Of particular interest in this project is the lifespan of solutions to certain problems in nonlinear elasticity. These problems resemble certain questions in nonlinear wave equations where the proofs of long-time existence rely heavily on the many invariances of the linear wave equation. In nonhomogeneous materials, however, these invariances may be lost, so different techniques are required. As a model problem for problems where isotropy is maintained in planes, such as hexagonal crystals, certain two-dimensional isotropic problems will first be studied. Here one must make more delicate use of the nonlinear structure of the equations in order to show such long-time existence.
这个项目的目的是提高我们对复杂背景几何对某些波动或色散方程解的影响的理解。例如,几何形状可以由边界的引入、由非平坦度量的影响或由非均匀材料的考虑而产生。这个项目的一个主要方面是研究全球的时间分散措施,如局部能量估计和Escherichartz估计,变系数波动方程。与平面情况相比,人们遇到了额外的困难,例如,由于哈密尔顿射线的聚焦,捕获的射线,以及本征函数或共振的可能性。一个特别有趣的例子是研究爱因斯坦方程的非平坦解的波动方程,例如史瓦西时空。本项目的第二个主要组成部分是研究某些非线性波动或弹性波动方程解的长期存在性。这里特别感兴趣的是各向异性弹性问题或非线性波动方程在外部区域的存在性问题,其中某些通常用于证明长期存在性的不变性是不可用的。理论物理中的一类基本开放问题围绕着爱因斯坦方程解的稳定性。 也就是说,如果宇宙开始接近某个已知的解,人们可能会试图证明它在以后的所有时间里都保持接近那个解。唯一已知的严格的稳定性证明是所谓的平坦解。人们相信,对波动方程色散性质的良好理解将在任何稳定性证明中发挥重要作用,上述第一组问题旨在对此提供一些见解。理解偏微分方程解的寿命是基本的兴趣。 我们的目标是估计一个解决方案可能存在的时间量之前,说,成为无限大(爆破现象)。在这个项目中特别感兴趣的是非线性弹性中某些问题的解决方案的寿命。这些问题类似于非线性波动方程中的某些问题,其中长期存在的证明严重依赖于线性波动方程的许多不变性。然而,在非均匀材料中,这些不变性可能会丢失,因此需要不同的技术。作为一个模型问题的问题,各向同性是保持在平面,如六方晶体,某些二维各向同性问题将首先进行研究。在这里,人们必须更精细地利用方程的非线性结构,以表明这种长期存在。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Metcalfe其他文献

Global existence for quasilinear wave equations satisfying the null condition
满足零条件的拟线性波动方程的全局存在性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Facci;Jason Metcalfe
  • 通讯作者:
    Jason Metcalfe
Pointwise decay for the Maxwell field on black hole space-times
黑洞时空麦克斯韦场的点式衰减
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Metcalfe;D. Tataru;M. Tohaneanu
  • 通讯作者:
    M. Tohaneanu
On Keel-Smith-Sogge estimates and some applications
关于 Keel-Smith-Sogge 估计和一些应用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Metcalfe;Makoto Nakamura;足助太郎;伊藤恵子;M. Nakamura;足助太郎;伊藤恵子;足助太郎;M. Nakamura
  • 通讯作者:
    M. Nakamura
Elastic waves in exterior domains. Part I. Almost global existence
On global solutions for nonlinear wave equations with localized dissipations
具有局域耗散的非线性波动方程的全局解
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Metcalfe;Makoto Nakamura;足助太郎;伊藤恵子;M. Nakamura
  • 通讯作者:
    M. Nakamura

Jason Metcalfe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Metcalfe', 18)}}的其他基金

RTG: Partial Differential Equations on Manifolds
RTG:流形上的偏微分方程
  • 批准号:
    2135998
  • 财政年份:
    2022
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Continuing Grant
Dispersive and Wave Equations in the Presence of Background Geometry
背景几何存在下的色散方程和波动方程
  • 批准号:
    2054910
  • 财政年份:
    2021
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Standard Grant
CAREER: The Wave Equation on Black Hole Backgrounds
职业:黑洞背景上的波动方程
  • 批准号:
    1054289
  • 财政年份:
    2011
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0502854
  • 财政年份:
    2005
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Fellowship Award

相似海外基金

Random dispersive and wave equations
随机色散方程和波动方程
  • 批准号:
    2883083
  • 财政年份:
    2023
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Studentship
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Standard Grant
Probabilistic Aspects of Dispersive and Wave Equations
色散方程和波动方程的概率方面
  • 批准号:
    2246908
  • 财政年份:
    2023
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Standard Grant
Random dispersive and wave equations
随机色散方程和波动方程
  • 批准号:
    2885401
  • 财政年份:
    2022
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Studentship
Wave length dispersive X-ray spectrometer
波长色散X射线光谱仪
  • 批准号:
    451579122
  • 财政年份:
    2021
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Major Research Instrumentation
Frontiers in Dispersive Wave Equations
色散波动方程前沿
  • 批准号:
    2108019
  • 财政年份:
    2021
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
  • 批准号:
    21K03315
  • 财政年份:
    2021
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dispersive and Wave Equations in the Presence of Background Geometry
背景几何存在下的色散方程和波动方程
  • 批准号:
    2054910
  • 财政年份:
    2021
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Standard Grant
Asymptotic Dynamics of Nonlinear Wave and Dispersive Equations
非线性波和色散方程的渐近动力学
  • 批准号:
    1954707
  • 财政年份:
    2020
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Standard Grant
Different kinds of Parisi-Wu equations(parabolic or Schroedinger stochastic quantisation equations); Wave and dispersive PDEs; PKS equations; Cattaneo
不同类型的Parisi-Wu方程(抛物线或薛定谔随机量化方程);
  • 批准号:
    2438500
  • 财政年份:
    2020
  • 资助金额:
    $ 11.06万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了