RTG: Partial Differential Equations on Manifolds

RTG:流形上的偏微分方程

基本信息

  • 批准号:
    2135998
  • 负责人:
  • 金额:
    $ 241.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Partial differential equations are ubiquitous in models of physical phenomena. Discovering the statistics of the sets where quantum particles are least likely to exist, describing the behavior of light waves near black holes, explaining the existence of bands on the planet Jupiter by analyzing the equations of fluid dynamics on a rotating sphere, and establishing the existence of solutions to systems modeling ferromagnetism or plasmas require an analysis of partial differential equations in the presence of background geometry. All of these are fundamental topics that members of the team of principal investigators have explored, and for which they are ideally situated to pass on their expertise. The purpose of this project is to create a sustainable program that enhances and modernizes the curriculum, enriches the training, and improves recruitment. This will create larger and better prepared cohorts of mathematicians to advance the understanding of the interplay between geometry and solutions to partial differential equations.The associated faculty will thoughtfully mentor postdoctoral, graduate student, undergraduate student, and high school research trainees. Graduate courses that may be taken asynchronously will be developed to broaden the curriculum. A regular workshop will be formed to get new graduate students to engage with research early. Developmental training groups will be designed to improve trainees’ technical writing and to guide them on aspects of academic life such as seeking funding. An online topics course collaborative will be established to promote sharing across academic institutions of specialized courses on cutting-edge material. An online undergraduate research seminar will be created for the dissemination of results from a newly formalized undergraduate research program at the host institution and for the recruitment of new graduate students who are conducting interesting research at other colleges and universities. The host institution’s partial differential equations mini-school program, which allows for trainees to interact with a principal speaker and their students, postdocs, and co-authors in an intimate environment that permits in-depth presentations, will be revived. Outreach activities such as a program to allow for interested local high school students to engage with mathematical research and the Girls Talk Math summer program will be supported. Many of the concrete needs that are addressed are not unique to the host institution, and these initiatives offer great benefit to a broad community of trainees.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
偏微分方程在物理现象的模型中无处不在。发现量子粒子最不可能存在的集合的统计,描述黑洞附近光波的行为,通过分析旋转球体上的流体动力学方程来解释木星上带的存在,以及建立模拟铁磁性或等离子体的系统的解的存在性,都需要在背景几何的存在下分析偏微分方程。所有这些都是主要研究人员团队成员探索的基本主题,他们非常适合传递他们的专业知识。该项目的目的是创建一个可持续的计划,增强和现代化的课程,丰富培训,并提高招聘。这将创造更大和更好的数学家群体,以促进几何和偏微分方程的解决方案之间的相互作用的理解。相关的教师将周到地指导博士后,研究生,本科生和高中研究实习生。将开发可以异步学习的研究生课程,以拓宽课程。将定期举办研讨会,让新的研究生尽早参与研究。发展培训小组将旨在提高学员的技术写作能力,并指导他们在学术生活的各个方面,如寻求资金。将建立一个在线专题课程协作,以促进学术机构之间分享关于尖端材料的专门课程。将创建一个在线本科研究研讨会,用于传播主办机构新正式的本科研究计划的结果,并招募正在其他学院和大学进行有趣研究的新研究生。主办机构的偏微分方程迷你学校计划,允许学员与主要发言人和他们的学生,博士后和合作者在一个亲密的环境,允许深入的演示,将被恢复。将支持外联活动,如让感兴趣的当地高中生参与数学研究的方案和女孩谈论数学暑期方案。许多具体的需求并不是主办机构所独有的,这些举措为广大的受训者社区带来了巨大的利益。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Metcalfe其他文献

Global existence for quasilinear wave equations satisfying the null condition
满足零条件的拟线性波动方程的全局存在性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Facci;Jason Metcalfe
  • 通讯作者:
    Jason Metcalfe
Pointwise decay for the Maxwell field on black hole space-times
黑洞时空麦克斯韦场的点式衰减
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Metcalfe;D. Tataru;M. Tohaneanu
  • 通讯作者:
    M. Tohaneanu
On Keel-Smith-Sogge estimates and some applications
关于 Keel-Smith-Sogge 估计和一些应用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Metcalfe;Makoto Nakamura;足助太郎;伊藤恵子;M. Nakamura;足助太郎;伊藤恵子;足助太郎;M. Nakamura
  • 通讯作者:
    M. Nakamura
Elastic waves in exterior domains. Part I. Almost global existence
On global solutions for nonlinear wave equations with localized dissipations
具有局域耗散的非线性波动方程的全局解
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Metcalfe;Makoto Nakamura;足助太郎;伊藤恵子;M. Nakamura
  • 通讯作者:
    M. Nakamura

Jason Metcalfe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Metcalfe', 18)}}的其他基金

Dispersive and Wave Equations in the Presence of Background Geometry
背景几何存在下的色散方程和波动方程
  • 批准号:
    2054910
  • 财政年份:
    2021
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
CAREER: The Wave Equation on Black Hole Backgrounds
职业:黑洞背景上的波动方程
  • 批准号:
    1054289
  • 财政年份:
    2011
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Continuing Grant
Studies on Dispersive and Wave Equations
色散方程和波动方程的研究
  • 批准号:
    0800678
  • 财政年份:
    2008
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0502854
  • 财政年份:
    2005
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Fellowship Award

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
  • 批准号:
    41664001
  • 批准年份:
    2016
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
  • 批准号:
    61402377
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
  • 批准号:
    11261019
  • 批准年份:
    2012
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    ARC Future Fellowships
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Continuing Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了