Problems in Harmonic Analysis
谐波分析中的问题
基本信息
- 批准号:0801154
- 负责人:
- 金额:$ 16.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator is planning to work on a variety of problems in harmonic analysis arising in the study of multilinear and rough linear singular integral operators. Some problems that the PI is planning to work are related to time-frequency analysis, which was used in the celebrated Lacey-Thiele's theorem on the bi-linear Hilbert transform. These problems include uniform bounds for the bi-linear Hilbert transform, the disc and the corresponding maximal bi-linear multiplier, the Hilbert transform along Lipschitz vector fields, and multi-linear Carleson-type operators arising in the almost everywhere convergence of spherical partial sums of Fourier series in higher dimensions. Some problems are related to Szemer\'edi's theorem on arithmetic progression and the (multilinear) oscillatory integrals, in which the time frequency analysis is unvaluable. These type of problems contain the bi-linear Hilbert transform along curves, and the multi-linear oscillatory integrals along curves, the muliti-linear oscillatory integrals with non-degenerate phases which was first studied by Christ, Tao, Thiele and the PI. Some problems are associated to the Kakeya problem such as the Lipschitz maximal functions, initiated by Lacey and the PI, and the Zygmund conjecture. Recently, C. Muscalu and the PI generalized the Carleson-Hunt theorem to the multi-linear case. And M. Lacey and the PI had been able to use the time-frequency analysis to obtain some conditional results for the Hilbert transform along Lipschitz vector fields. A fundamental subject in analysis is the differentiability of the integral of certain functions. Recently M. Lacey and the PI proved some estimates for a Lipschitz Kakeya maximal function by a completely new method based on some crucial geometric observations. It turns out that a complete understanding of the Lipschitz Kakeya maximal function is a key to answer the question on the differentiablity of certain functions in a Lipschitz choice of directions, which was posed by A. Zygmund about seventy years ago. The Hilbert transform along curves had been understood well by work of many people in the last several decades. However, the bi-linear Hilbert transform along curves is a new field. Some partial results such as uniform estimates for some para-products arising in the study of this type of problem were obtained by the PI. As the linear case, the relation of multi-linear singular integrals along curves and multi-linear oscillatory integrals is an interesting and important topic in analysis. This relation is only partially understood. Based on it, D. Fan and the PI obtained an affirmative result for the bi-linear oscillatory integral along parabolas incorporating some oscillatory factors, which is a starting point for understanding the bi-linear Hilbert transform along curves. The main theme in harmonic analysis is disassembling and assembling complicated objects into simpler well-understood pieces, called frequencies, by analogy to decomposing musical pieces into arrangements of a few basic tones. In signal processing, harmonic analysis is used in the detection of irregularities of signals and images, the protection against the loss of information due to a sudden and unexpected interruption, and the retrieval of the original data. These applications provide the main practical motivation for some theoretical research described in this proposal. The research experience and results gained by investigating these difficult problems such as the Stein's and Zygmund's conjectures help the PI better understand a wide range of topics. It also provides the PI with some new visions on mathematics that greatly benefits the PI's teaching. Hopefully it will also benefit fellow mathematical educators, and more importantly dedicated mathematical students, through sharing the new knowledge and visions.
主要研究者计划研究多线性和粗糙线性奇异积分算子研究中出现的调和分析中的各种问题。PI计划工作的一些问题与时频分析有关,该分析用于双线性希尔伯特变换的著名Lacey-Thiele定理。这些问题包括双线性Hilbert变换的一致界、圆盘和相应的最大双线性乘子、沿着Lipschitz向量场的Hilbert变换以及高维Fourier级数球面部分和的几乎处处收敛中的多线性Carleson型算子. 一些问题与Szemer\'edi的等差数列定理和(多线性)振荡积分有关,其中时频分析是没有价值的。这类问题包括沿着曲线的双线性Hilbert变换,沿沿着曲线的多线性振荡积分,Christ,Tao,Thiele和PI首先研究的非退化相位的多线性振荡积分。一些问题是相关的挂谷问题,如Lipschitz极大函数,发起莱西和PI,和Zygmund猜想。最近,C. Muscalu和PI将Carleson-Hunt定理推广到多线性情况。 和M.莱西和PI已经能够使用时频分析来获得沿着Lipschitz向量场的希尔伯特变换的一些条件结果。分析中的一个基本问题是某些函数的积分的可微性。最近M。莱西和PI证明了一些估计Lipschitz Kakeya极大函数的一个全新的方法的基础上,一些关键的几何观察。结果表明,对Lipschitz Kakeya极大函数的完整理解是回答A. Zygmund大约70年前。沿着曲线的Hilbert变换在过去的几十年里已经被许多人的工作所理解。然而,沿沿着曲线的双线性Hilbert变换是一个新的领域。在研究这类问题时,PI得到了一些局部结果,如对某些仿乘积的一致估计。作为线性情形,多线性沿着曲线奇异积分与多线性振荡积分的关系是分析中一个有趣而重要的课题。这种关系只是部分理解。在此基础上,D。Fan和PI得到了包含一些振荡因子的双线性振荡积分沿着抛物线的肯定结果,这是理解双线性Hilbert变换沿着曲线的起点。 谐波分析的主要主题是将复杂的对象分解和组装成更简单的易于理解的片段,称为频率,类似于将音乐片段分解成几个基本音调的排列。在信号处理中,谐波分析用于检测信号和图像的不规则性,防止由于突然和意外中断而导致的信息丢失,以及恢复原始数据。这些应用提供了一些理论研究的主要实际动机,在这个建议。通过调查这些困难的问题,如斯坦和齐格蒙德的理论,获得的研究经验和结果有助于PI更好地理解广泛的主题。它也为PI提供了一些新的数学视野,极大地有利于PI的教学。希望它也将有利于同行的数学教育工作者,更重要的是专门的数学学生,通过分享新的知识和愿景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaochun Li其他文献
Experimental studies on the short term effect of CO2 on the tensile failure of sandstone
CO2对砂岩拉伸破坏短期影响的实验研究
- DOI:
10.1016/j.egypro.2014.11.364 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mingze Liu;Bing Bai;Xiaochun Li - 通讯作者:
Xiaochun Li
Effectiveness Research Using Electronic Health Records (EHRs)
使用电子健康记录 (EHR) 进行有效性研究
- DOI:
10.1002/9781118445112.stat07901 - 发表时间:
2016 - 期刊:
- 影响因子:24.7
- 作者:
Xiaochun Li;Changyu Shen;Lingling Li - 通讯作者:
Lingling Li
Concurrent CMF and reduced-dose radiation therapy (RT) in patients with early-stage breast cancer: updated results of a prospective trial
早期乳腺癌患者同步 CMF 和减量放射治疗 (RT):一项前瞻性试验的最新结果
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
J. Bellon;S. Come;R. Gelman;Xiaochun Li;L. Shulman;B. Silver;J. Harris;A. Recht - 通讯作者:
A. Recht
Agricultural producer service subsidies and agricultural pollution: An approach based on endogenous agricultural pollution
农业生产性服务补贴与农业污染:基于内源性农业污染的方法
- DOI:
10.1111/rode.12983 - 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
Xiaochun Li;Huanan Fu - 通讯作者:
Huanan Fu
A Randomized, Placebo-Controlled, Double Blind Trial of the MDR Modulator, Zosuquidar, during Conventional Induction and Post-Remission Therapy for Pts > 60 Years of Age with Newly Diagnosed Acute Myeloid Leukemia (AML) or High-Risk Myelodysplastic Syndrome (HR-MDS): ECOG 3999.
一项随机、安慰剂对照、双盲试验,在传统诱导和缓解后治疗期间对 MDR 调节剂 Zosuquidar 对年龄 > 60 岁新诊断急性髓系白血病 (AML) 或高危骨髓增生异常综合征 (HR-
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
L. Cripe;Xiaochun Li;M. Litzow;E. Paietta;J. Rowe;S. Luger;M. Tallman - 通讯作者:
M. Tallman
Xiaochun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaochun Li', 18)}}的其他基金
Fundamental Study on Nanotechnology Enabled Arc Welding of High Strength Aluminum Alloys
高强度铝合金纳米技术电弧焊基础研究
- 批准号:
2230828 - 财政年份:2023
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
EAGER: Properties and Manufacturing of Transformative Aluminum Nanocomposite Electrical Conductors
EAGER:变革性铝纳米复合电导体的性能和制造
- 批准号:
1639164 - 财政年份:2016
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Collaborative Research: Nanoparticle-Enabled Mechanisms for Growth Control in Immiscible Alloys under Regular Cooling
合作研究:常规冷却下不混溶合金生长控制的纳米颗粒机制
- 批准号:
1562252 - 财政年份:2016
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Collaborative Research: Friction Stir Processing of Cast Metal Matrix Nanocomposites
合作研究:铸造金属基纳米复合材料的搅拌摩擦加工
- 批准号:
1463627 - 财政年份:2015
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Laser Additive Manufacturing of Metal Matrix Nanocomposites
金属基纳米复合材料的激光增材制造
- 批准号:
1538694 - 财政年份:2015
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Study and Pragmatic Enhancement of Rock Cutting/Drilling for Oil Exploration through Embedded Thin Film Sensor Arrays in PCD Inserts
合作研究:通过 PCD 刀片中嵌入式薄膜传感器阵列进行石油勘探岩石切割/钻探的基础研究和实用增强
- 批准号:
1439351 - 财政年份:2014
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
SNM: Thermal Drawing of Fibers with Individually Addressable Nanoelectrode Array for Cellular Electrophysiology
SNM:用于细胞电生理学的具有可单独寻址纳米电极阵列的纤维热拉丝
- 批准号:
1449395 - 财政年份:2014
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Study and Pragmatic Enhancement of Rock Cutting/Drilling for Oil Exploration through Embedded Thin Film Sensor Arrays in PCD Inserts
合作研究:通过 PCD 刀片中嵌入式薄膜传感器阵列进行石油勘探岩石切割/钻探的基础研究和实用增强
- 批准号:
1300188 - 财政年份:2013
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Collaborative Research: Embedding of Thin Film Sensors in Advanced Ceramic Tools for Micro/Nano Scale Thermomechanical Measurements in and Near Tool-Workpiece Interface
合作研究:在先进陶瓷工具中嵌入薄膜传感器,用于工具-工件界面及其附近的微/纳米级热机械测量
- 批准号:
0824713 - 财政年份:2008
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
- 批准号:
2246906 - 财政年份:2023
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2022
- 资助金额:
$ 16.16万 - 项目类别:
Discovery Grants Program - Individual
International Conference on Microlocal Analysis, Harmonic Analysis, and Inverse Problems
微局域分析、调和分析和反问题国际会议
- 批准号:
2154480 - 财政年份:2022
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
- 批准号:
RGPIN-2021-03545 - 财政年份:2021
- 资助金额:
$ 16.16万 - 项目类别:
Discovery Grants Program - Individual
Problems in harmonic analysis: decoupling and Bourgain-Brezis inequalities
调和分析中的问题:解耦和布尔干-布雷齐斯不等式
- 批准号:
FT200100399 - 财政年份:2020
- 资助金额:
$ 16.16万 - 项目类别:
ARC Future Fellowships
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
- 批准号:
2000048 - 财政年份:2020
- 资助金额:
$ 16.16万 - 项目类别:
Standard Grant
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2019
- 资助金额:
$ 16.16万 - 项目类别:
Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2018
- 资助金额:
$ 16.16万 - 项目类别:
Discovery Grants Program - Individual
The Role of Representation Theory in Problems of Harmonic Analysis Related to Amenability and Locally Compact Groups
表示论在与顺应性和局部紧群相关的调和分析问题中的作用
- 批准号:
RGPIN-2015-04007 - 财政年份:2017
- 资助金额:
$ 16.16万 - 项目类别:
Discovery Grants Program - Individual