Polyhedral combinatorics in representation theory and algebraic geometry
表示论和代数几何中的多面体组合
基本信息
- 批准号:0801187
- 负责人:
- 金额:$ 20.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPrincipal Investigator: Zelevinsky, Andrei Proposal Number: DMS - 0801187Institution: Northeastern UniversityTitle: Polyhedral combinatorics in representation theory and algebraic geometryThe proposed research focuses on cluster algebras, a class of commutative rings discovered by the PI in collaboration with S. Fomin. This theory arose as an attempt to create an algebraic framework for the study of two classical fields: theory of total positivity, and representation theory of semisimple Lie groups. Since its inception, the theory of cluster algebras found a number of exciting connections and applications: quiver representations, preprojective algebras, Calabi-Yau algebras and categories, Seiberg dualities, discrete integrable systems, Poisson geometry, etc. The PI explores the structural properties of cluster algebras, and their connections and applications. He also develops the theory of quivers with potentials and their representations, motivated among other things, by the theory of superpotentials in theoretical physics. One of the main instruments of the study is polyhedral combinatorics.This project has roots in two classical areas of mathematics: representation theory and the theory of total positivity. Representation theory is a mathematical approach to studying symmetry; more specifically, it encodes the symmetry properties of various physical and biological systems that occur in nature. Total positivity is a remarkable property of matrices (square arrays of numbers) that generalizes the familiar notion of positive numbers. Both theories find numerous applications in physics, chemistry and other sciences, as well as in other mathematical disciplines. In fact, representation theory serves as the mathematical foundation of quantum mechanics, while total positivity is a major tool for explaining oscillations in mechanical systems. During the last decade, deep connections were found between the two fields, and the scope of their applications was greatly extended. This project explores the modern framework of representation theory and total positivity, with the goal of making its formalism more explicit and understandable.
主要研究人员:Zlevinsky,Andrei提案编号:DMS-0801187机构:东北大学标题:表示理论和代数几何中的多面体组合学建议的研究重点是簇代数,这是PI与S.Fomin合作发现的一类交换环。这一理论的提出是为了建立一个代数框架来研究两个经典领域:全正性理论和半单李群的表示理论。自创立以来,簇代数理论发现了许多令人兴奋的联系和应用:箭图表示、预投射代数、Calabi-Yau代数和范畴、Seiberg对偶、离散可积系统、Poisson几何等。PI探索了簇代数的结构性质及其联系和应用。在理论物理中的超势理论的启发下,他还发展了有势箭图及其表示的理论。这项研究的主要工具之一是多面体组合学。这个项目植根于两个经典的数学领域:表示论和全正性理论。表象理论是一种研究对称性的数学方法;更具体地说,它编码了自然界中出现的各种物理和生物系统的对称性。全正性是矩阵(数的平方数组)的一个显著性质,它推广了人们熟悉的正数概念。这两种理论在物理、化学和其他科学以及其他数学学科中都有大量的应用。事实上,表象理论是量子力学的数学基础,而全正性是解释机械系统振荡的主要工具。在过去的十年里,这两个领域之间发现了深刻的联系,它们的应用范围得到了极大的扩展。这个项目探索了表征理论和完全实证性的现代框架,目的是使其形式主义更明确和更容易理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Zelevinsky其他文献
Recognizing Schubert Cells
- DOI:
10.1023/a:1008759501188 - 发表时间:
2000-07-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergey Fomin;Andrei Zelevinsky - 通讯作者:
Andrei Zelevinsky
アファイン量子群のある種の部分代数の有限次元規約表現について
关于仿射量子群某些子代数的有限维约定表示
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Tomoki Nakanishi;Andrei Zelevinsky;H. Shimakura;Vladimir Dobrev;Takao Watanabe;Fumiharu Kato;山岸正和;伊藤達郎 - 通讯作者:
伊藤達郎
The existence of greedy bases in rank 2 quantum cluster algebras
- DOI:
10.1016/j.aim.2016.03.022 - 发表时间:
2016-09-10 - 期刊:
- 影响因子:
- 作者:
Kyungyong Lee;Li Li;Dylan Rupel;Andrei Zelevinsky - 通讯作者:
Andrei Zelevinsky
Positivity and tameness in rank 2 cluster algebras
- DOI:
10.1007/s10801-014-0509-6 - 发表时间:
2014-03-21 - 期刊:
- 影响因子:0.900
- 作者:
Kyungyong Lee;Li Li;Andrei Zelevinsky - 通讯作者:
Andrei Zelevinsky
Simple vertices of maximal minor polytopes
- DOI:
10.1007/bf02574010 - 发表时间:
1994-03-01 - 期刊:
- 影响因子:0.600
- 作者:
Prakash Santhanakrishnan;Andrei Zelevinsky - 通讯作者:
Andrei Zelevinsky
Andrei Zelevinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Zelevinsky', 18)}}的其他基金
Polyhedral Combinatorics in Representation Theory and Algebraic Geometry
表示论和代数几何中的多面体组合
- 批准号:
0500534 - 财政年份:2005
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
Polyhedral Combinatorics in Representation Theory and Algebraic Geometry
表示论和代数几何中的多面体组合
- 批准号:
0200299 - 财政年份:2002
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
Polyhedral Combinatorics in Representation Theory and Algebraic Geometry
表示论和代数几何中的多面体组合
- 批准号:
9971362 - 财政年份:1999
- 资助金额:
$ 20.1万 - 项目类别:
Continuing grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9625511 - 财政年份:1996
- 资助金额:
$ 20.1万 - 项目类别:
Continuing grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9304247 - 财政年份:1993
- 资助金额:
$ 20.1万 - 项目类别:
Continuing grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Hypergeometric Functions
数学科学:与超几何函数相关的代数、几何和组合结构
- 批准号:
9104867 - 财政年份:1991
- 资助金额:
$ 20.1万 - 项目类别:
Standard Grant
相似海外基金
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2022
- 资助金额:
$ 20.1万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics of R-Polynomials and Representation Theory
R 多项式组合学和表示论
- 批准号:
565962-2021 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Algebraic Combinatorics and Representation Theory
代数组合学和表示论
- 批准号:
RGPIN-2016-04999 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Discovery Grants Program - Individual
RTG: Combinatorics, Geometry, Representation Theory, and Topology at University of Oregon
RTG:俄勒冈大学的组合学、几何学、表示论和拓扑学
- 批准号:
2039316 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Continuing Grant
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
RGPIN-2018-05877 - 财政年份:2021
- 资助金额:
$ 20.1万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and representation theory
代数组合学和表示论
- 批准号:
RGPIN-2018-05877 - 财政年份:2020
- 资助金额:
$ 20.1万 - 项目类别:
Discovery Grants Program - Individual
Realization problems in Representation Theory and Algebraic Combinatorics
表示论和代数组合学中的实现问题
- 批准号:
RGPIN-2017-05331 - 财政年份:2020
- 资助金额:
$ 20.1万 - 项目类别:
Discovery Grants Program - Individual
Interactions between combinatorics, representation theory, and algebraic geometry
组合数学、表示论和代数几何之间的相互作用
- 批准号:
2265021 - 财政年份:2019
- 资助金额:
$ 20.1万 - 项目类别:
Studentship