Stochastic Differential Equations and Applications
随机微分方程及其应用
基本信息
- 批准号:0806017
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator proposes to study five problems in the general area of stochastic differential equations and their applications in finance. A general framework based on a new type of pathwise stochastic Taylor expansion is proposed to substantially advance the long standing theory of stochastic viscosity solution for fully nonlinear stochastic partial differential equations. The new notion of forward-backward martingale problem (FBMP) and the weak solution to forward-backward SDEs will be further investigated, and the discussion of well-posedness, especially the uniqueness of the solutions will be extended to general cases where the coefficients are allowed to be measurable and/or VMO (Variation Mean Oscillation), reaching the most advanced stage of the theory. A new variant of reflected backward SDEs is proposed with an eye on its applications to various problems in finance where a variant of Skorohod problem and a stochastic representation theorem for optional p rocesses were originated. Two proposed problems are more closely related to finance. The general convex risk measures will be put into the framework of the newly developed theory of filtration consistent nonlinear expectations, and will be investigated using quadratic backward stochastic differential equations and the BMO (Bounded Mean Oscillation) martingale theory. A credit risk model with partial information is proposed, aiming at a general framework where continuous observation, counting process observation, and delayed information can be present at the same time. New types of nonlinear filtering problems are expected to emerge, and some interesting new phenomena exhibited so far have raised new questions for the theory of stochastic differential equations.The proposed research is seeking significant advancement in the field of stochastic differential equations, as well as the related areas such as finance. The proposed projects on stochastic viscosity solution for nonlinear SPDEs and weak solution of FBSDEs will build on the results initiated by the PI to further explore the nature of the respective subjects, and to fill the gaps in the long standing theory. The projects on variant reflected BSDE, on quadratic nonlinear expectations, and on credit risk models with partial information are aiming at developing new tools in stochastic analysis to solve complex but practical problems in finance. Most projects in the proposed research have direct or indirect connections to applied fields, especially stochastic control, stochastic finance, and operations research. Two problems in finance theory will be treated directly, using advanced techniques in stochastic analysis and stochastic differential equations. Several parts of the pro posed research involve Ph.D students and postdoctoral fellows, partly reflecting an educational incentive of this proposal.
主要研究者建议研究随机微分方程及其在金融中的应用的一般领域的五个问题。基于一种新型的路径随机Taylor展开,提出了一种新的随机粘性解理论框架,该框架实质性地推进了完全非线性随机偏微分方程的随机粘性解理论.本文将进一步研究正倒向鞅问题(FBMP)的新概念和正倒向随机微分方程的弱解,并将其适定性,特别是解的唯一性的讨论推广到系数可测和/或VMO(Variation Mean Oscillation)的一般情形,达到理论的最高阶段.本文提出了一种新的反射倒向随机微分方程的变形,并着眼于它在金融中各种问题中的应用,其中Skorohod问题的变形和可选过程的随机表示定理是起源。有两个拟议的问题与财政关系更为密切。将一般的凸风险测度纳入新发展的滤过一致非线性期望理论的框架中,并利用二次倒向随机微分方程和BMO鞅(Bounded Mean Oscillation)理论进行研究.针对连续观测、计数过程观测和延迟信息同时存在的一般框架,提出了一种部分信息信用风险模型.新类型的非线性滤波问题的出现,以及一些有趣的新现象的出现,都给随机微分方程理论提出了新的问题,本研究将在随机微分方程领域以及金融等相关领域取得重大进展。关于非线性SPDE的随机粘性解和FBSDEs的弱解的拟议项目将建立在PI发起的结果的基础上,以进一步探索各自学科的性质,并填补长期存在的理论空白。关于变量反映的贝叶斯、二次非线性期望和部分信息信用风险模型的项目旨在开发随机分析的新工具,以解决金融中复杂但实际的问题。 在拟议的研究中,大多数项目都与应用领域有直接或间接的联系,特别是随机控制,随机金融和运筹学。金融理论中的两个问题将直接处理,使用随机分析和随机微分方程的先进技术。该研究的几个部分涉及博士生和博士后研究员,部分反映了这一建议的教育激励。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Ma其他文献
Weak Solutions of Forward–Backward SDE's
前向-后向 SDE 的弱解
- DOI:
10.1081/sap-120020423 - 发表时间:
2003 - 期刊:
- 影响因子:1.3
- 作者:
Fabio Antonelli;Jin Ma - 通讯作者:
Jin Ma
Flow-induced vibrations of two circular cylinders in tandem with shear flow at low Reynolds number
低雷诺数下两个圆柱体与剪切流串联的流激振动
- DOI:
10.1016/j.jfluidstructs.2015.08.012 - 发表时间:
2015-11 - 期刊:
- 影响因子:3.6
- 作者:
Yan Bao;Jin Ma;Jiabao Lu;Zhaolong Han - 通讯作者:
Zhaolong Han
Ta-Doped Ga2O3 Epitaxial Films on Porous p-GaN Substrates: Structure and Self-Powered Solar-Blind Photodetectors
多孔 p-GaN 衬底上的 Ta 掺杂 Ga2O3 外延膜:结构和自供电日盲光电探测器
- DOI:
10.1021/acs.cgd.2c00401 - 发表时间:
2022-07 - 期刊:
- 影响因子:0
- 作者:
Rongrong Chen;Di Wang;Jie Liu;Bo Feng;Hongyan Zhu;Xinyu Han;Caina Luan;Jin Ma;Hongdi Xiao - 通讯作者:
Hongdi Xiao
Surrogate Modeling-Based Multi-Objective Dynamic VAR Planning Considering Short-Term Voltage Stability and Transient Stability
考虑短期电压稳定性和暂态稳定性的基于代理模型的多目标动态VAR规划
- DOI:
10.1109/tpwrs.2017.2696021 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Tong Han;Yanbo Chen;Jin Ma;Yi Zhao;Yuan-ying Chi - 通讯作者:
Yuan-ying Chi
Effect of epitaxial growth rate on morphological, structural and optical properties of β-Ga2O3 films prepared by MOCVD
外延生长速率对MOCVD制备β-Ga2O3薄膜形貌、结构和光学性能的影响
- DOI:
10.1016/j.materresbull.2021.111718 - 发表时间:
2021-12 - 期刊:
- 影响因子:5.4
- 作者:
Di Wang;Xiaochen Ma;Hongdi Xiao;Rongrong Chen;Yong Le;Caina Luan;Biao Zhang;Jin Ma - 通讯作者:
Jin Ma
Jin Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Ma', 18)}}的其他基金
Conferences on Recent Developments in Backward Stochastic Differential Equations and Mathematical Finance
倒向随机微分方程和数学金融最新进展会议
- 批准号:
1059909 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
1106853 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
0835051 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
0505427 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Stochastic Differential Equations and Applications
随机微分方程及其应用
- 批准号:
0204332 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Mathematical Sciences: Stochastic Differential Equations And Their Applications In Singular-Regular Stochastic Control
数学科学:随机微分方程及其在奇异正则随机控制中的应用
- 批准号:
9301516 - 财政年份:1993
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Studies of the Stochastic Partial Differential Equations
随机偏微分方程的研究
- 批准号:
2246850 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
- 批准号:
2872613 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Studentship
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
McKean Vlasov Stochastic Partial Differential Equations
McKean Vlasov 随机偏微分方程
- 批准号:
EP/W034220/1 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
- 批准号:
2884422 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Studentship
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Numerical methods for stochastic differential equations
随机微分方程的数值方法
- 批准号:
RGPIN-2018-04449 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Integrating stochastic programming, differential equations with deep learning methods for optimizing non-medical intervention policies
将随机规划、微分方程与深度学习方法相结合,优化非医疗干预政策
- 批准号:
RGPIN-2022-04519 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
- 批准号:
RGPIN-2020-06500 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual