Stochastic Differential Equations and Related Topics

随机微分方程及相关主题

基本信息

  • 批准号:
    0835051
  • 负责人:
  • 金额:
    $ 6.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-03-26 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The principal investigator proposes to study several long-standing problems involving forward-backward stochastic differential equations (FBSDEs) and stochastic partial differential equations (SPDEs), as well as their applications in stochastic control and stochastic finance/insurance theory. The main contributions of the research include a new notion of forward-backward martingale problem (FBMP), along with a general framework for studying the well-posedness of the weak solutions of FBSDEs; and a study of stochastic characteristics for fully nonlinear SPDEs, a potential fundamental building block of the theory of stochastic viscosity solutions. The well-posedness of a class of FBSDEs with jumps and possibly super-linear growth coefficients, as well as its application to a class of optimal investment/reinsurance problems with general insurance models will also be investigated. The PI also proposes to continue his research on stochastic control and stochastic finance/insurance problems. Two particular problems: one involving the dynamic pricing of the "Universal Variable Life" insurance, and the other involving systems driven by normal martingales (or martingales satisfying structure equations) will receive strong attention. The latter is also considered as a theoretical extension of the proposed optimal reinsurance problem.Almost all the proposed projects have strong background in applications, especially in stochastic control and stochastic finance/insurance. Many of these problems reflect the new trend of securitisation of risks in insurance products and pension plans, and the results are expected to have broader impact on actuarial mathematics, financial mathematics, and could benefit the insurance community for good contract designs. The proposed project on the weak solutions for FBSDEs, especially the new notion of FBMP, will fill the gap in the theory, which has been left open so far. The proposed project on stochastic characteristics of fully nonlinear SPDEs will bring new insight to the notion of stochastic viscosity solutions, and is expected to substantially advance the general theory.
主要研究者建议研究几个长期存在的问题,涉及向前向后随机微分方程(FBSDES)和随机偏微分方程(SPDES),以及它们在随机控制和随机金融/保险理论中的应用。研究的主要贡献包括一个新的概念,向前向后鞅问题(FBMP),沿着的一般框架,研究的弱解的适定性;和研究的随机特性完全非线性SPDE,一个潜在的基本积木理论的随机粘性解。还将研究一类具有跳跃和可能的超线性增长系数的FBSDES的适定性,以及它在一类具有一般保险模型的最优投资/再保险问题中的应用。PI还建议继续研究随机控制和随机金融/保险问题。两个特别的问题:其中一个是关于“万能变寿”保险的动态定价问题,另一个是关于由正常鞅(或满足结构方程的鞅)驱动的系统的问题将受到人们的关注。后者也被认为是所提出的最优再保险问题的理论扩展。几乎所有的建议项目都有很强的应用背景,特别是在随机控制和随机金融/保险方面。这些问题中的许多反映了保险产品和养老金计划中风险证券化的新趋势,其结果预计将对精算数学,金融数学产生更广泛的影响,并可能使保险界受益于良好的合同设计。本文提出的FBSD方程弱解的概念,特别是FBMP的新概念,将填补该理论的差距,这是迄今为止尚未解决的问题。 完全非线性SPDE的随机特性的拟议项目将带来新的见解的概念的随机粘性解决方案,预计将大大推进一般理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin Ma其他文献

Ta-Doped Ga2O3 Epitaxial Films on Porous p-GaN Substrates: Structure and Self-Powered Solar-Blind Photodetectors
多孔 p-GaN 衬底上的 Ta 掺杂 Ga2O3 外延膜:结构和自供电日盲光电探测器
  • DOI:
    10.1021/acs.cgd.2c00401
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rongrong Chen;Di Wang;Jie Liu;Bo Feng;Hongyan Zhu;Xinyu Han;Caina Luan;Jin Ma;Hongdi Xiao
  • 通讯作者:
    Hongdi Xiao
Ultraviolet-green photoluminescence of -Ga2O3 films deposited on MgAl6O10 (100) substrate
紫外-绿光光致发光
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wei Mi;Caina Luan;Zhao Li;Cansong Zhao;Xianjing Feng;Jin Ma
  • 通讯作者:
    Jin Ma
Total arsenic concentrations in Chinese children’s urine
中国儿童尿液中总砷浓度
  • DOI:
    10.1007/s10653-017-9963-0
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Xuan Zhang;Beibei Wang;Xiaoyong Cui;Chunye Lin;Xitao Liu;Jin Ma
  • 通讯作者:
    Jin Ma
The Effect of Mineral Dissolution on the Effective Stress Law for Permeability in a Tight Sandstone
矿物溶解对致密砂岩渗透率有效应力定律的影响
  • DOI:
    10.1029/2020gl088346
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Jin Ma;L. Querci;B. Hattendorf;M. Saar;X. Kong
  • 通讯作者:
    X. Kong
Effect of epitaxial growth rate on morphological, structural and optical properties of β-Ga2O3 films prepared by MOCVD
外延生长速率对MOCVD制备β-Ga2O3薄膜形貌、结构和光学性能的影响
  • DOI:
    10.1016/j.materresbull.2021.111718
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Di Wang;Xiaochen Ma;Hongdi Xiao;Rongrong Chen;Yong Le;Caina Luan;Biao Zhang;Jin Ma
  • 通讯作者:
    Jin Ma

Jin Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin Ma', 18)}}的其他基金

Conferences on Recent Developments in Backward Stochastic Differential Equations and Mathematical Finance
倒向随机微分方程和数学金融最新进展会议
  • 批准号:
    1059909
  • 财政年份:
    2011
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
  • 批准号:
    1106853
  • 财政年份:
    2011
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Continuing Grant
Stochastic Differential Equations and Applications
随机微分方程及其应用
  • 批准号:
    0806017
  • 财政年份:
    2008
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Continuing Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
  • 批准号:
    0505427
  • 财政年份:
    2005
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Continuing Grant
Stochastic Differential Equations and Applications
随机微分方程及其应用
  • 批准号:
    0204332
  • 财政年份:
    2002
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stochastic Differential Equations And Their Applications In Singular-Regular Stochastic Control
数学科学:随机微分方程及其在奇异正则随机控制中的应用
  • 批准号:
    9301516
  • 财政年份:
    1993
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant

相似海外基金

Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
Studies of the Stochastic Partial Differential Equations
随机偏微分方程的研究
  • 批准号:
    2246850
  • 财政年份:
    2023
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
  • 批准号:
    2872613
  • 财政年份:
    2023
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Studentship
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
  • 批准号:
    2245242
  • 财政年份:
    2023
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Continuing Grant
McKean Vlasov Stochastic Partial Differential Equations
McKean Vlasov 随机偏微分方程
  • 批准号:
    EP/W034220/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
  • 批准号:
    2884422
  • 财政年份:
    2023
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Studentship
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Continuing Grant
Numerical methods for stochastic differential equations
随机微分方程的数值方法
  • 批准号:
    RGPIN-2018-04449
  • 财政年份:
    2022
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating stochastic programming, differential equations with deep learning methods for optimizing non-medical intervention policies
将随机规划、微分方程与深度学习方法相结合,优化非医疗干预政策
  • 批准号:
    RGPIN-2022-04519
  • 财政年份:
    2022
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2022
  • 资助金额:
    $ 6.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了