Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
基本信息
- 批准号:1106853
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator proposes to study six problems in the general area of stochastic differential equations and their applications in finance and insurance. Several long standing problems in the theory of Forward-backward Stochastic Differential Equations (FBSDEs) are investigated, mainly under the non-Markovian framework, allowing less regular coefficients and arbitrary time duration. A ``User's Guide" type result is expected. A class of quasilinear Backward Stochastic PDEs (BSPDE) is studied in the spirit of nonlinear Feynman-Kac formula, and a new type of FBSDEs with coefficients having discontinuity, arising directly from a real application, will be explored for the first time. A class of combined optimal reinsurance and investment problems with random terminal times and possible partial observations is proposed as a direct application of the newly developed results on FBSDEs. Two problems regarding credit risk models with partial information are proposed. One assumes the so-called ``Hypothesis (H)" (or ``immersion property") and focuses on a special BSDE with super-linear growth and exogenous jumps, with an eye on the utility optimization problems involving defaultable assets; and the other tries to understand the relationship between the conditional density and intensity of the defaults in filtering models where the Hypothesis (H) fail. The PI also proposes to investigate optimal execution problems in an ``order-driven" market by first establishing a new model for the dynamics of the Limit Order Book (LOB) using an equilibrium density argument that results in a general type of nonlinear/random shape of the LOB. The proposed research aims at resolving some of the ``last obstacles" in the theory of FBSDEs and backward SPDEs, and some related topics in finance and insurance. The proposed projects on FBSDEs build on the results initiated by the PI and will lead to a new solution scheme to treat cases that have been open for many years, which will in turn help the proposed research on optimal reinsurance/investment and utility optimization problems involving defautable assets. The study on credit risk models with partial information and optimal liquidation problems are aiming at exploring new modeling aspects in stochastic finance. Most projects in the proposed research have direct or indirect connections to applied fields, especially stochastic control and stochastic finance/insurance. Three problems are directly related to issues in finance and insurance, using the tools developed in the proposed theoretical studies, while one theoretical problem arises from a real project with a local bank in LA. Several parts of the proposed research involve Ph.D students and postdoctoral fellows. The PI will continue strengthening the connections with local financial communities through a regular Math Finance Colloquium series sponsored by the Math Finance Program at USC, for which PI is the director. Ph.D students involved in the proposed research are more likely to obtain internships from the local banks, and some might lead to permanent employment.
主要研究人员建议研究随机微分方程一般领域中的六个问题及其在金融和保险中的应用。研究了正倒向随机微分方程理论中的几个长期存在的问题,主要是在非马尔科夫框架下,允许较少的正则系数和任意持续时间。应该是``用户指南‘类型的结果。在非线性Feynman-Kac公式的基础上研究了一类拟线性倒向随机偏微分方程组(BSPDE),并首次探索了一类由实际应用直接产生的系数具有间断的新型倒向随机偏微分方程组。提出了一类具有随机终止时间和可能部分观测的组合最优再保险投资问题,作为最新结果在随机系统上的直接应用。提出了关于部分信息信用风险模型的两个问题。一种假设是所谓的‘假设(H)’(或‘’浸没性质‘),它着眼于一类具有超线性增长和外生跳跃的特殊BSDE,着眼于涉及可违约资产的效用优化问题;另一种则试图理解假设(H)失效的过滤模型中违约的条件密度和违约强度之间的关系。PI还建议通过首先建立一个新的极限订单账簿(LOB)动态模型来研究“订单驱动”市场中的最优执行问题,该模型使用平衡密度论证,从而导致LOB的一般类型的非线性/随机形状。拟议的研究旨在解决FBSDE和落后的SPDEs理论中的一些“最后的障碍”,以及金融和保险中的一些相关问题。关于FBSDE的拟议项目建立在PI发起的结果的基础上,并将产生一个新的解决方案来处理已悬而未决多年的案件,这反过来将有助于拟议的涉及可违约资产的最优再保险/投资和效用优化问题的研究。研究部分信息信用风险模型和最优清算问题,旨在探索随机金融中新的建模方法。研究中的大多数项目都与应用领域有直接或间接的联系,特别是随机控制和随机金融/保险。使用拟议的理论研究中开发的工具,有三个问题与金融和保险问题直接相关,而一个理论问题来自洛杉矶一家当地银行的真实项目。这项拟议研究的几个部分涉及博士生和博士后研究员。PI将继续通过由南加州大学数学金融项目赞助的定期数学金融研讨会系列来加强与当地金融界的联系,PI是该项目的主任。参与这项拟议研究的博士生更有可能从当地银行获得实习机会,其中一些人可能会获得永久就业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Ma其他文献
Weak Solutions of Forward–Backward SDE's
前向-后向 SDE 的弱解
- DOI:
10.1081/sap-120020423 - 发表时间:
2003 - 期刊:
- 影响因子:1.3
- 作者:
Fabio Antonelli;Jin Ma - 通讯作者:
Jin Ma
Flow-induced vibrations of two circular cylinders in tandem with shear flow at low Reynolds number
低雷诺数下两个圆柱体与剪切流串联的流激振动
- DOI:
10.1016/j.jfluidstructs.2015.08.012 - 发表时间:
2015-11 - 期刊:
- 影响因子:3.6
- 作者:
Yan Bao;Jin Ma;Jiabao Lu;Zhaolong Han - 通讯作者:
Zhaolong Han
Ta-Doped Ga2O3 Epitaxial Films on Porous p-GaN Substrates: Structure and Self-Powered Solar-Blind Photodetectors
多孔 p-GaN 衬底上的 Ta 掺杂 Ga2O3 外延膜:结构和自供电日盲光电探测器
- DOI:
10.1021/acs.cgd.2c00401 - 发表时间:
2022-07 - 期刊:
- 影响因子:0
- 作者:
Rongrong Chen;Di Wang;Jie Liu;Bo Feng;Hongyan Zhu;Xinyu Han;Caina Luan;Jin Ma;Hongdi Xiao - 通讯作者:
Hongdi Xiao
Surrogate Modeling-Based Multi-Objective Dynamic VAR Planning Considering Short-Term Voltage Stability and Transient Stability
考虑短期电压稳定性和暂态稳定性的基于代理模型的多目标动态VAR规划
- DOI:
10.1109/tpwrs.2017.2696021 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Tong Han;Yanbo Chen;Jin Ma;Yi Zhao;Yuan-ying Chi - 通讯作者:
Yuan-ying Chi
Effect of epitaxial growth rate on morphological, structural and optical properties of β-Ga2O3 films prepared by MOCVD
外延生长速率对MOCVD制备β-Ga2O3薄膜形貌、结构和光学性能的影响
- DOI:
10.1016/j.materresbull.2021.111718 - 发表时间:
2021-12 - 期刊:
- 影响因子:5.4
- 作者:
Di Wang;Xiaochen Ma;Hongdi Xiao;Rongrong Chen;Yong Le;Caina Luan;Biao Zhang;Jin Ma - 通讯作者:
Jin Ma
Jin Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Ma', 18)}}的其他基金
Conferences on Recent Developments in Backward Stochastic Differential Equations and Mathematical Finance
倒向随机微分方程和数学金融最新进展会议
- 批准号:
1059909 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
0835051 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Stochastic Differential Equations and Applications
随机微分方程及其应用
- 批准号:
0806017 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Stochastic Differential Equations and Related Topics
随机微分方程及相关主题
- 批准号:
0505427 - 财政年份:2005
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Stochastic Differential Equations and Applications
随机微分方程及其应用
- 批准号:
0204332 - 财政年份:2002
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Mathematical Sciences: Stochastic Differential Equations And Their Applications In Singular-Regular Stochastic Control
数学科学:随机微分方程及其在奇异正则随机控制中的应用
- 批准号:
9301516 - 财政年份:1993
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Studies of the Stochastic Partial Differential Equations
随机偏微分方程的研究
- 批准号:
2246850 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
- 批准号:
2872613 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Studentship
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
McKean Vlasov Stochastic Partial Differential Equations
McKean Vlasov 随机偏微分方程
- 批准号:
EP/W034220/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
- 批准号:
2884422 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Studentship
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Numerical methods for stochastic differential equations
随机微分方程的数值方法
- 批准号:
RGPIN-2018-04449 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Integrating stochastic programming, differential equations with deep learning methods for optimizing non-medical intervention policies
将随机规划、微分方程与深度学习方法相结合,优化非医疗干预政策
- 批准号:
RGPIN-2022-04519 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
- 批准号:
RGPIN-2020-06500 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual