Collaborative Research: A Software System for Algebraic Geometry Research
协作研究:代数几何研究的软件系统
基本信息
- 批准号:0810918
- 负责人:
- 金额:$ 1.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Macaulay2 is a free computer algebra system dedicated to the qualitative investigation of systems of polynomial equations in many variables. It was developed by Daniel Grayson and Michael Stillman with NSF funding. Grayson and Stillman will continue the development of Macaulay2. They will upgrade existing algorithms, develop and publish new algorithms, and implement new algorithms. In particular, they will develop the interaction of the symbolic computations that are Macaulay2's strength with the new floating point algorithms in algebraic geometry that are now being developed by Andrew Sommese, Jan Verschelde, Anton Leykin, Frank Schreyer and others. It is anticipated that these will make a whole new class of problems accessible to experimentation and, in many cases, solution. Eisenbud will organize contacts for the extended integration with other systems and will engage other mathematicians in the development work that needs to be done. Central to the project are the continued expansion of the collaborations that have been the hallmark of Macaulay2 development. For this purpose two Macaulay2 Workgroup Meetings will be held in the course of the two-year grant. One particular research problem to be attacked is: the use of computational systems to (probabilistically) disprove, or suggest a proof of, the Jacobian Conjecture on polynomial automorphisms of affine spaces (this will require the use the new floating point algorithms). Other areas where new algorithms can make an impact include the study of numerical systems, fractions with specified types of denominators, ideal factorization, systems where the multiplication of the variables doesn't satisfy the commutative law, geometric optimization, the analysis of observations of gene expression levels over time, and bioinformatics. Macaulay2 is part of the infrastructure that supports mathematical research involving systems of polynomial equations in many variables. The study of such systems of polynomial equations is central in pure and applied mathematics and in physics, with recent new impacts in such fields as cryptography, robotics and string theory. Increasing computer power and the availability of programs like Macaulay2 are making a new level of experimentation possible. The experimental results found with Macaulay2 are helping in the formulation and development of tractable conjectures in mathematics as well as in physics. A measure of Macaulay2's impact is that at least 270 research papers have cited Macaulay2, several mathematicians have contributed code, and books and course materials are now using it. The PI's will develop the software further and will recruit developers from the research community. They will introduce graduate students and mathematicians to the use of computers in research mathematics and the requisite skills in programming and development of algorithms, through workgroups at Berkeley and through the appointments of graduate students as graduate assistants.
Macaulay 2是一个免费的计算机代数系统,致力于对多变量多项式方程组进行定性研究。它是由丹尼尔格雷森和迈克尔斯蒂尔曼与国家科学基金会的资金。Grayson和Stillman将继续开发Macaulay2。他们将升级现有算法,开发和发布新算法,并实现新算法。特别是,他们将开发符号计算的相互作用,这是Macaulay 2的力量与代数几何中的新浮点算法,这些算法现在正在由Andrew Sommese,Jan Verschelde,Anton Leykin,Frank Schreyer等人开发。预计这些将使一个全新的一类问题可以进行实验,并在许多情况下,解决方案。艾森巴德将组织与其他系统的扩展集成的联系,并将从事其他数学家的发展工作,需要做的。该项目的核心是继续扩大合作,这是Macaulay 2开发的标志。为此,在两年赠款期间将举行两次麦考利2工作组会议。一个需要解决的特殊研究问题是:使用计算系统(概率性地)反驳或建议证明仿射空间多项式自同构的雅可比猜想(这需要使用新的浮点算法)。新算法可以产生影响的其他领域包括数值系统的研究,具有指定类型的分解器的分数,理想因子分解,变量相乘不满足交换律的系统,几何优化,随时间推移对基因表达水平观察结果的分析,以及生物信息学。Macaulay2是支持涉及多变量多项式方程系统的数学研究的基础设施的一部分。对这种多项式方程组的研究是纯数学、应用数学和物理学的核心,最近在密码学、机器人学和弦理论等领域产生了新的影响。计算机能力的提高和Macaulay2等程序的可用性使实验达到了一个新的水平。Macaulay的实验结果有助于数学和物理学中易于处理的结构的形成和发展。Macaulay 2的影响力的一个衡量标准是,至少有270篇研究论文引用了Macaulay 2,一些数学家贡献了代码,书籍和课程材料现在正在使用它。PI将进一步开发该软件,并将从研究社区招募开发人员。他们将介绍研究生和数学家使用计算机在研究数学和必要的技能,在编程和开发算法,通过工作组在伯克利分校和通过研究生的任命为研究生助理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Eisenbud其他文献
Projective resolutions of Cohen-Macaulay algebras
- DOI:
10.1007/bf01450656 - 发表时间:
1981-03-01 - 期刊:
- 影响因子:1.400
- 作者:
David Eisenbud;Oswald Riemenschneider;Frank-Olaf Schreyer - 通讯作者:
Frank-Olaf Schreyer
Far-Out Syzygies
遥远的 Syzygies
- DOI:
10.1007/978-3-319-26437-0_6 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
David Eisenbud;Irena Peeva - 通讯作者:
Irena Peeva
Mathematisches Forschungsinstitut Oberwolfach Classical Algebraic Geometry Introduction by the Organisers
奥伯沃尔法赫数学研究所 主办方介绍经典代数几何
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Organised By;David Eisenbud;Berkeley;Joe Harris;Olaf Schreyer;Harvard;Frank - 通讯作者:
Frank
The classification of homogeneous Cohen-Macaulay rings of finite representation type
- DOI:
10.1007/bf01456058 - 发表时间:
1988-03-01 - 期刊:
- 影响因子:1.400
- 作者:
David Eisenbud;Jürgen Herzog - 通讯作者:
Jürgen Herzog
Tate resolutions and {MCM} approximations
Tate 分辨率和 {MCM} 近似
- DOI:
10.1090/conm/773/15531 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
David Eisenbud;Frank-Olaf Schreyer - 通讯作者:
Frank-Olaf Schreyer
David Eisenbud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Eisenbud', 18)}}的其他基金
Syndication of the Film Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani
电影《表面的秘密:玛丽亚姆·米尔扎哈尼 (Maryam Mirzakhani) 的数学愿景》联合发布
- 批准号:
2105227 - 财政年份:2021
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Commutative Algebra and Algebraic Geometry
交换代数和代数几何
- 批准号:
2001649 - 财政年份:2020
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Critical Issues in Mathematics Education 2018
2018年数学教育关键问题
- 批准号:
1827412 - 财政年份:2018
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Critical Issues in Mathematics Education 2017
2017年数学教育关键问题
- 批准号:
1738702 - 财政年份:2017
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Syndication of an one-hour documentary about mathematicians: Counting from Infinity via American Public Television
通过美国公共电视台联合制作一部关于数学家的一小时纪录片:从无穷大开始计数
- 批准号:
1607976 - 财政年份:2016
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Building on the Success of Critical Issues in Mathematics Education Workshops
以数学教育研讨会中关键问题的成功为基础
- 批准号:
1461358 - 财政年份:2015
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Partnerships: Workshop on Non-profit/NSF Collaborations
合作伙伴关系:非营利组织/NSF 合作研讨会
- 批准号:
1539953 - 财政年份:2015
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Commutative Algebra and Algebraic Geometry
交换代数和代数几何
- 批准号:
1502190 - 财政年份:2015
- 资助金额:
$ 1.8万 - 项目类别:
Continuing Grant
Underrepresented Students in Topology and Algebra Research Symposium (USTARS) 2014, April 11-13, 2014
2014 年拓扑与代数研究研讨会 (USTARS) 中代表性不足的学生,2014 年 4 月 11-13 日
- 批准号:
1434323 - 财政年份:2014
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Syndication on public television stations via NETA of "Taking the Long View: The Life of Shiing-shen Chern"
通过 NETA 在公共电视台联合播出“放眼长远:陈省身的一生”
- 批准号:
1261327 - 财政年份:2013
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Frameworks: Quakeworx - An extensible software framework for earthquake simulations
协作研究:框架:Quakeworx - 用于地震模拟的可扩展软件框架
- 批准号:
2311207 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
- 批准号:
2311430 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: DASS: Assessing the Relationship Between Privacy Regulations and Software Development to Improve Rulemaking and Compliance
合作研究:DASS:评估隐私法规与软件开发之间的关系以改进规则制定和合规性
- 批准号:
2317185 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type 1: Software-Hardware Recycling and Repair Dataset Infrastructure (SHReDI) for Sustainable Computing
合作研究:DESC:类型 1:用于可持续计算的软硬件回收和修复数据集基础设施 (SHReDI)
- 批准号:
2324949 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
- 批准号:
2232594 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: SaTC-EDU: Integrating Cybersecurity in Computing Curricula: A Software PBL-Driven Approach with Focus on Identity and Access Management (IAM)
合作研究:SaTC-EDU:将网络安全集成到计算课程中:以身份和访问管理 (IAM) 为重点的软件 PBL 驱动方法
- 批准号:
2302614 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
- 批准号:
2403747 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Geospatial Cyberinfrastructure Workshop: Building High-Performance, Ethical, and Secured Geospatial Software
协作研究:会议:地理空间网络基础设施研讨会:构建高性能、道德且安全的地理空间软件
- 批准号:
2330331 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Learning Semantics of Code To Automate Software Assurance Tasks
协作研究:SHF:媒介:学习代码语义以自动化软件保障任务
- 批准号:
2313054 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant