Commutative Algebra and Algebraic Geometry

交换代数和代数几何

基本信息

  • 批准号:
    2001649
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Algebraic Geometry is the study of systems of polynomial equations. As such, it has broad applications not only within mathematics but also in many fields of science from medicine to physics. The subject has developed for over 200 years, but there are many fresh problems and new directions. Commutative algebra is a subject that lies at the intersection of algebraic geometry and number theory. Since the advent of powerful and easily available computing resources, the possibilities for experimentation within commutative algebra, algebraic geometry, and their applications has multiplied. A byproduct of this project will be the further development of these computational tools. Cohen-Macaulay modules and sheaves play a role in commutative algebra and algebraic geometry that is a natural analogue of the role of finite dimensional representations in the case of finite dimensional algebras. The Principal Investigator will work on projects in commutative algebra, algebraic geometry, and computational methods that center around the theory of Cohen-Macaulay modules over particularly interesting classes of varieties: Toric varieties, complete intersections, and residual intersections. The PI will also continue to train graduate students in related research fields and actively be involved in several highly recognized outreach activities.The Principal Investigator will work on Ulrich modules and Clifford Algebras. Cohen-Macaulay and Ulrich modules over quadratic hypersurfaces are well-understood from work of Knoerrer (over algebraically closed fields) and Buchweitz-Eisenbud-Schreyer over arbitrary fields. The PI will investigate deeper questions about Ulrich modules and other maximal Cohen-Macaulay modules on complete intersections of two quadrics using Clifford algebra techniques, extending Miles Reid's thesis, and making explicit work of Bondal-Orlov and Kapranov, as well as the theory of maximal Cohen-Macaulay modules over complete intersections developed by the proposer with Irena Peeva. Finally the PI will work on the cohomology of sheaves on toric varieties, extending techniques from exterior algebra algebras introduced in joint work with Daniel Erman and Frank-Olaf Schreyer for cohomology of sheaves on projective space and successfully extended to products of projective space to all toric varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是研究多项式方程组的学科。因此,它不仅在数学中而且在从医学到物理学的许多科学领域中具有广泛的应用。这门学科已经发展了200多年,但也有许多新的问题和新的方向。交换代数是代数几何和数论的交叉学科。自从强大且容易获得的计算资源出现以来,交换代数、代数几何及其应用中的实验的可能性成倍增加。这个项目的副产品将是这些计算工具的进一步发展。Cohen-Macaulay模和层在交换代数和代数几何中扮演的角色,是有限维代数中有限维表示的自然模拟。主要研究者将致力于交换代数,代数几何和计算方法的项目,这些项目围绕着科恩-麦考利模块的理论,特别是有趣的品种:复曲面品种,完整的交叉点和剩余交叉点。PI还将继续培养相关研究领域的研究生,并积极参与几项高度认可的外展活动。首席研究员将从事Ulrich模块和Clifford代数的工作。二次超曲面上的Cohen-Macaulay模和Ulrich模可以从Knoerrer(代数闭域上)和Buchweitz-Eisenbud-Schreyer(任意域上)的工作中得到很好的理解。 PI将使用Clifford代数技术研究关于两个二次曲面的完全相交上的Ulrich模和其他极大Cohen-Macaulay模的更深层次的问题,扩展Miles Reid的论文,并明确Bondal-Orlov和Kapranov的工作,以及由提议者与Irena Peeva开发的完全相交上的极大Cohen-Macaulay模的理论。最后,PI将研究复曲面簇上层的上同调,扩展技术从外部代数代数介绍了在联合工作与丹尼尔埃尔曼和弗兰克-Olaf Schreyer因射影空间上的层的上同调而获奖,并成功地将其推广到所有环面类的射影空间的乘积。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识产权进行评估来支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Duality and socle generators for residual intersections
残差交集的对偶性和 socle 生成器
Mathematics at the Airport? Why Sure!
机场数学?
Layered resolutions of Cohen–Macaulay modules
Cohen Macaulay 模块的分层分辨率
Tate resolutions and {MCM} approximations
Tate 分辨率和 {MCM} 近似
  • DOI:
    10.1090/conm/773/15531
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Eisenbud;Frank-Olaf Schreyer
  • 通讯作者:
    Frank-Olaf Schreyer
Tor as a module over an exterior algebra
Tor 作为外部代数的模块
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Eisenbud其他文献

Projective resolutions of Cohen-Macaulay algebras
  • DOI:
    10.1007/bf01450656
  • 发表时间:
    1981-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Eisenbud;Oswald Riemenschneider;Frank-Olaf Schreyer
  • 通讯作者:
    Frank-Olaf Schreyer
Far-Out Syzygies
遥远的 Syzygies
  • DOI:
    10.1007/978-3-319-26437-0_6
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Eisenbud;Irena Peeva
  • 通讯作者:
    Irena Peeva
Mathematisches Forschungsinstitut Oberwolfach Classical Algebraic Geometry Introduction by the Organisers
奥伯沃尔法赫数学研究所 主办方介绍经典代数几何
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Organised By;David Eisenbud;Berkeley;Joe Harris;Olaf Schreyer;Harvard;Frank
  • 通讯作者:
    Frank
The classification of homogeneous Cohen-Macaulay rings of finite representation type
  • DOI:
    10.1007/bf01456058
  • 发表时间:
    1988-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Eisenbud;Jürgen Herzog
  • 通讯作者:
    Jürgen Herzog
Ideals and their Fitting ideals
理想及其适合的理想
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Eisenbud;Antonino Ficarra;Jurgen Herzog;Somayeh Moradi
  • 通讯作者:
    Somayeh Moradi

David Eisenbud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Eisenbud', 18)}}的其他基金

Syndication of the Film Secrets of the Surface: The Mathematical Vision of Maryam Mirzakhani
电影《表面的秘密:玛丽亚姆·米尔扎哈尼 (Maryam Mirzakhani) 的数学愿景》联合发布
  • 批准号:
    2105227
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Critical Issues in Mathematics Education 2018
2018年数学教育关键问题
  • 批准号:
    1827412
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Critical Issues in Mathematics Education 2017
2017年数学教育关键问题
  • 批准号:
    1738702
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Syndication of an one-hour documentary about mathematicians: Counting from Infinity via American Public Television
通过美国公共电视台联合制作一部关于数学家的一小时纪录片:从无穷大开始计数
  • 批准号:
    1607976
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Building on the Success of Critical Issues in Mathematics Education Workshops
以数学教育研讨会中关键问题的成功为基础
  • 批准号:
    1461358
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Partnerships: Workshop on Non-profit/NSF Collaborations
合作伙伴关系:非营利组织/NSF 合作研讨会
  • 批准号:
    1539953
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Commutative Algebra and Algebraic Geometry
交换代数和代数几何
  • 批准号:
    1502190
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Underrepresented Students in Topology and Algebra Research Symposium (USTARS) 2014, April 11-13, 2014
2014 年拓扑与代数研究研讨会 (USTARS) 中代表性不足的学生,2014 年 4 月 11-13 日
  • 批准号:
    1434323
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Syndication on public television stations via NETA of "Taking the Long View: The Life of Shiing-shen Chern"
通过 NETA 在公共电视台联合播出“放眼长远:陈省身的一生”
  • 批准号:
    1261327
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
REU Site: MSRI Undergraduate Program (MSRI-UP REU)
REU 网站:MSRI 本科项目 (MSRI-UP REU)
  • 批准号:
    1156499
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
  • 批准号:
    2246962
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
  • 批准号:
    RGPIN-2017-05732
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in Commutative Algebra and Algebraic Geometry
交换代数和代数几何研究
  • 批准号:
    2200501
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    RGPIN-2021-02391
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    DGECR-2021-00010
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Launch Supplement
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    RGPIN-2021-02391
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
A Unified Perspective on Singularities in Commutative Algebra and Algebraic Geometry
交换代数和代数几何奇异性的统一视角
  • 批准号:
    2101800
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
  • 批准号:
    RGPIN-2017-05732
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
  • 批准号:
    2001267
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了