CAREER: Partial Differential Equation-based Image Processing with Applications to Radiation Oncology
职业:基于偏微分方程的图像处理及其在放射肿瘤学中的应用
基本信息
- 批准号:0820817
- 负责人:
- 金额:$ 0.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past decade, new nonlinear partial differentialequations (PDEs) have been developed for various image processingapplications, such as noise reduction, edge detection, imagesegmentation and restoration. While the attention of thescientific community in this area predominantly focused oncreating the new PDEs, very little attention was paid todeveloping numerical algorithms that approximate their solutions.The few numerical algorithms that are currently used suffer froma variety of problems: they are not accurate enough, too slow,and not fault-free. In this project, the investigator developsaccurate, efficient, and robust numerical algorithms fornonlinear PDEs in image processing. The research activities arebased on the investigator's extensive work in the field ofhyperbolic conservation laws, and include numerical methods forthe Hamilton-Jacobi equations, fast algorithms for high-ordernonlinear PDEs, algorithms for computing steady-state solutions,numerical homogenization of Hamilton-Jacobi equations andmulti-resolution analysis, analysis of nonlinear diffusionequations, constrained morphing active contours and geodesicflows, and "non-blind" algorithms for image processing. Aportion of the research activities focuses on improving existingalgorithms in order to solve a specific imaging problem inradiation oncology treatment planning. The investigator develops novel mathematical techniques forimage processing and uses these techniques for solving problemsin the field of radiation oncology imaging. Radiation oncologytreats cancer by delivering relatively small doses of radiationto tumors in order to eliminate cancer without destroying orchronically damaging healthy tissues in and around the growth.CT and MRI scans are used as three-dimensional anatomical modelsto ensure that the treatments conform geometrically to the tumortarget. This process depends critically upon identifying thelocation of the tumor as well as the healthy organs (in order tominimize the dose of radiation in these areas). Despite extendedresearch, the existing mathematical tools for image processingare unsuitable for clinical medical applications. Thesegmentation of the CT and MRI scans is still carried out bymanual tools, and consumes about one-half of the time required toplan the treatments. The investigator designs accurate andreliable automated algorithms that would significantly shortenthis time and have a big impact on radiation oncology. Heintegrates into his work educational activities that demonstratethe importance of applied mathematics in a broad spectrum ofsciences. Special emphasis is given to applications ofcomputational mathematics in biology and cutting-edgetechnologies. The planned educational activities includeprograms for junior-high, high-school, undergraduate, andgraduate students. The investigator works to increase the genderand ethnic diversity in the mathematical sciences by encouragingunder-represented groups to study applied mathematics and chooseit as a future career.
在过去的十年中,新的非线性偏微分方程(PDE)已经发展到各种图像处理的应用,如降噪,边缘检测,图像分割和恢复。 虽然科学界在这一领域的注意力主要集中在创建新的偏微分方程上,但很少有人注意开发近似其解的数值算法。目前使用的少数数值算法存在各种问题:它们不够精确,速度太慢,而且不是无故障的。 在该项目中,研究人员为图像处理中的非线性偏微分方程开发了准确、高效且鲁棒的数值算法。 研究活动是基于研究者在双曲守恒律领域的广泛工作,包括Hamilton-Jacobi方程的数值方法,高阶非线性偏微分方程的快速算法,计算稳态解的算法,Hamilton-Jacobi方程的数值均匀化和多分辨率分析,非线性扩散方程的分析,约束变形活动轮廓和geodisflows,以及用于图像处理的“非盲”算法。 一部分研究活动集中在改进现有的算法,以解决放射肿瘤治疗计划中的特定成像问题。 研究者开发了新的数学技术用于图像处理,并使用这些技术来解决放射肿瘤学成像领域的问题。 放射肿瘤学通过向肿瘤提供相对小剂量的辐射来治疗癌症,以消除癌症而不破坏或长期损害生长中或周围的健康组织。CT和MRI扫描用作三维解剖模型,以确保治疗在几何上符合肿瘤靶点。 这一过程关键取决于确定肿瘤和健康器官的位置(以便最大限度地减少这些区域的辐射剂量)。 尽管进行了广泛的研究,但现有的图像处理数学工具不适合临床医学应用。 CT和MRI扫描的分割仍然是通过手动工具进行的,并且消耗了计划治疗所需时间的一半左右。 研究人员设计了准确可靠的自动化算法,这将大大缩短这个时间,并对放射肿瘤学产生重大影响。 他融入到他的工作教育活动,证明了应用数学的重要性,在广泛的科学。 特别强调计算数学在生物学和尖端技术中的应用。 计划中的教育活动包括针对初中、高中、大学生和研究生的项目。 调查员致力于通过鼓励代表性不足的群体学习应用数学并将其作为未来的职业来增加数学科学中的性别和种族多样性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Doron Levy其他文献
Long-term global threat assessment: Challenging new roles for emergency managers
长期全球威胁评估:应急管理人员面临的新角色挑战
- DOI:
10.5055/jem.2009.0084 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
R. Bissell;Andrew K. Bumbak;Doron Levy;Md Ms Patrick Echebi - 通讯作者:
Md Ms Patrick Echebi
Targeting CD4+ T cell Exhaustion to Improve Future Immunotherapy Strategies
- DOI:
10.1007/s11538-024-01389-8 - 发表时间:
2024-12-02 - 期刊:
- 影响因子:2.200
- 作者:
Tyler Simmons;Doron Levy - 通讯作者:
Doron Levy
Bimodal aphasia and dysgraphia: Phonological output buffer aphasia and orthographic output buffer dysgraphia in spoken and sign language
双模态失语症和失写症:口语和手语中的语音输出缓冲失语症和正字法输出缓冲失写症
- DOI:
10.1016/j.cortex.2024.10.013 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:3.300
- 作者:
Neta Haluts;Doron Levy;Naama Friedmann - 通讯作者:
Naama Friedmann
Doron Levy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Doron Levy', 18)}}的其他基金
Quantifying the Propagation of Resistance to Chemotherapy in Cancer
量化癌症化疗耐药性的传播
- 批准号:
1713109 - 财政年份:2017
- 资助金额:
$ 0.73万 - 项目类别:
Standard Grant
Modern Perspectives in Applied Mathematics: Theory and Numerics of PDEs
应用数学的现代视角:偏微分方程的理论和数值
- 批准号:
1356939 - 财政年份:2014
- 资助金额:
$ 0.73万 - 项目类别:
Standard Grant
Frontiers in Mathematical Biology: DMS/NIGMS PIs Meeting 2010
数学生物学前沿:2010 年 DMS/NIGMS PI 会议
- 批准号:
1015217 - 财政年份:2010
- 资助金额:
$ 0.73万 - 项目类别:
Standard Grant
Social Dynamics, Signaling, and Surface Motility in Cyanobacteria: Integrating Models and Experiments
蓝藻的社会动力学、信号传导和表面运动:模型和实验的结合
- 批准号:
0758374 - 财政年份:2008
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Partial Differential Equation-based Image Processing with Applications to Radiation Oncology
职业:基于偏微分方程的图像处理及其在放射肿瘤学中的应用
- 批准号:
0133511 - 财政年份:2002
- 资助金额:
$ 0.73万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
- 批准号:
2236491 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
- 批准号:
2238127 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
- 批准号:
2238219 - 财政年份:2023
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Regularity Theory of Measures and Dispersive Partial Differential Equations
职业:测度正则性理论和色散偏微分方程
- 批准号:
2142064 - 财政年份:2022
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Randomized Multiscale Methods for Heterogeneous Nonlinear Partial Differential Equations
职业:异质非线性偏微分方程的随机多尺度方法
- 批准号:
2145364 - 财政年份:2022
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
- 批准号:
2142575 - 财政年份:2022
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Integro-differential and Transport Problems in Partial Differential Equations
职业:偏微分方程中的积分微分和输运问题
- 批准号:
2144232 - 财政年份:2022
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant
CAREER: Constrained Optimal Control of Partial Differential Equations for Improving Energy Utilization in Transportation and in the Built Environment
职业:偏微分方程的约束最优控制,以提高交通和建筑环境中的能源利用率
- 批准号:
2042354 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Standard Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
- 批准号:
2042384 - 财政年份:2021
- 资助金额:
$ 0.73万 - 项目类别:
Continuing Grant