Remote Sensing of deep convective clouds - A new satellite view
深对流云遥感——新的卫星视图
基本信息
- 批准号:19002093
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Clouds and there evolution in a changing climate are a factor of major importance in the prediction of future climate due to their impact on the radiation budget of the earth. At the same time their variability in time and space is a source of uncertainties. Their global distribution and evolution can only be observed by satellite remote sensing. Thus, the uncertainties of standard remote sensing methods as well as the development of novel methods will be an important research topic for the next decade. The effects on existing methods due to (sub sensor resolution) cloud inhomogeneity have been investigated to some extent for low boundary layer clouds. However, no studies have yet been conducted concerning remote sensing of vertically more complex cloud types, e.g. deep convection, although their distinct three-dimensional structure is likely to introduce large errors into standard remote sensing methods. In this project the potential and the uncertainties of different, standard and novel, methods of remote sensing will be examined for deep convective cloud cases. The satellite observations corresponding to known cloud structures will be simulated and remote sensing techniques will be tested for the simulated data. To achieve this objective, complex cloud structures from physical cloud resolving modeling (CRM) will be used. A state-of-the-art Monte Carlo code for the three-dimensional simulation of radiative transfer will be used to simulate the radiance field. In this context, the Monte Carlo code will be optimized to reduce the extensive computing time necessary for 3D Monte Carlo simulations, in particular in the infra-red spectral range.
云及其在气候变化中的演变是预测未来气候的一个重要因素,因为它们对地球辐射收支有影响。与此同时,它们在时间和空间上的可变性是不确定性的一个来源。它们的全球分布和演变只有通过卫星遥感才能观测到。因此,标准遥感方法的不确定性以及新方法的发展将是未来十年的重要研究课题。对低边界层云,由于(亚传感器分辨率)云的不均匀性对现有方法的影响进行了一定程度的研究。然而,还没有对垂直方向上更复杂的云类,例如深对流进行遥感研究,尽管它们独特的三维结构可能会给标准遥感方法带来很大的误差。在本项目中,将对深对流云情况下不同的、标准的和新的遥感方法的潜力和不确定性进行审查。将模拟与已知云结构相对应的卫星观测,并将对模拟数据测试遥感技术。为了实现这一目标,将使用来自物理云解析建模(CRM)的复杂云结构。一个国家的最先进的蒙特卡洛代码的三维模拟辐射传输将被用来模拟辐射场。在这方面,蒙特卡洛代码将进行优化,以减少三维蒙特卡洛模拟所需的大量计算时间,特别是在红外光谱范围内。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Tobias Zinner其他文献
Dr. Tobias Zinner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
病原菌群体感应监管(policing quorum sensing)的生理生态机理及分子调控机制
- 批准号:31570490
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
基于Compressive sensing理论的单探测器太赫兹成像技术
- 批准号:60977009
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
水稻OsCAS(Calcium-sensing Receptor)基因的功能分析
- 批准号:30900771
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
- 批准号:60776795
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:联合基金项目
生防假单胞菌群体感应(quorum-sensing)系统的鉴定和功能分析
- 批准号:30370952
- 批准年份:2003
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments
集成遥感和深度学习对尾矿库进行预测监测
- 批准号:
2242668 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments
集成遥感和深度学习对尾矿库进行预测监测
- 批准号:
2414588 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
- 批准号:
RGPIN-2021-03624 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Post-disaster Recovery Monitoring based on Multi-Source Remote Sensing Imagery and Deep Learning
基于多源遥感影像和深度学习的灾后恢复监测
- 批准号:
21K14261 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
- 批准号:
RGPIN-2021-03624 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Interpolation of vegetation remote sensing images and anomaly detection using deep learning image generation technology
利用深度学习图像生成技术对植被遥感图像进行插值和异常检测
- 批准号:
20K21345 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Dealing with limited remote sensing training data by image synthesis and transfer learning applied to disaster flood mapping
通过图像合成和迁移学习处理有限的遥感训练数据应用于灾害洪水测绘
- 批准号:
20K19834 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Generative Adversarial Networks Based Multi-Sensor Remote Sensing Image Translation for Disaster Damage Mapping
基于生成对抗网络的多传感器遥感图像翻译用于灾害损失测绘
- 批准号:
19K20308 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
BigPlantSens - Assessing the Synergies of Big Data and Deep Learning for the Remote Sensing of Plant Species
BigPlantSens - 评估大数据和深度学习在植物物种遥感方面的协同作用
- 批准号:
444524904 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants