Multiplicity theory and related topics in commutative algebra

交换代数中的多重性理论及相关主题

基本信息

  • 批准号:
    0901613
  • 负责人:
  • 金额:
    $ 30.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Linkage, or liaison, has been used as a tool for classifying ideals and projective varieties. Finding necessary and sufficient conditions for two ideals to belong to the same linkage class is the central, though wide open, problem in the theory. The investigator suggests an answer to this question for zero-dimensional monomial ideals. The local-algebraic and the projective-geometric branch of linkage theory have proceeded in parallel, with only few implications known between them. The proposer plans to investigate this subtle interplay by studying the differences between local linkage and homogeneous linkage. Since the equivalence relation generated by classical linkage might be too restrictive for some purposes, the more inclusive notion of Gorenstein linkage has become a welcome alternative. The investigator has the broader goal of showing that in a given regular local ring all Cohen-Macaulay ideals of a fixed codimension belong to the same Gorenstein linkage class. The proposer plans to exploit recent advances on the topic of j-multiplicities to address some long standing problems in equisingularity theory. Equisingularity theory strives to find numerical conditions for when the members of a family of analytic sets are `equivalent' to one another. The investigator seeks to provide such a criterion by proving a general `principle of specialization of integral dependence' based on j-multiplicities. The investigator also proposes an intersection theoretic expression for the j-multiplicity of a module that would yield a recursive formula for computing this multiplicity. The core of an ideal is a subideal that encodes information about all possible reductions of the ideal, while being closely related to Briancon-Skoda type theorems and a conjecture of Kawamata about sections of line bundles. The investigator wishes to explore the connection between cores and multiplier ideals, a notion from complex algebraic geometry. He expects that a better understanding of this interplay will shed new light on both concepts and may lead to a combinatorial description of the core in the monomial case. Having worked out an algorithm for computing the core of zero-dimensional monomial ideals, the investigator now wishes to find such an algorithm for monomial ideals of arbitrary dimension. The known results about cores of ideals require restrictions on the local numbers of generators of the ideal as well as residual or depth conditions, assumptions that are satisfied by any zero-dimensional ideal. The investigator proposes to advance the theory beyond the class of ideals satisfying these conditions, using the monomial case as a testing ground.The proposer works in Commutative Algebra, an area concerned with the qualitative study of systems of polynomial equations in several variables. Such systems arise in algebraic geometry, but also in numerous applications outside of mathematics. Over the past two decades commutative algebraists have become increasingly interested in computational aspects, thereby establishing connections to applied areas such as computer algebra, robotics, cryptography, coding theory, statistics, and biology. This investigator's research too has a strong computational component, and his work on equisingularity theory in particular encompasses concrete geometric applications.
联系,或联络,已被用作分类理想和投影品种的工具。寻找两种理想属于同一联系类的充分必要条件,是这一理论的中心问题。研究者对零维单项式理想给出了这个问题的答案。连杆理论的局部代数分支和投影几何分支是并行发展的,它们之间的联系很少。作者计划通过研究局部连锁和同质连锁之间的差异来研究这种微妙的相互作用。由于经典连杆产生的等价关系对于某些目的可能过于严格,因此更具包容性的戈伦斯坦连杆概念成为一种受欢迎的替代方案。研究者有一个更广泛的目标,证明在给定的正则局部环上,固定协维的所有Cohen-Macaulay理想都属于同一个Gorenstein连杆类。作者计划利用j多重性的最新研究进展来解决等奇异性理论中一些长期存在的问题。等奇异性理论致力于寻找一组解析集的成员彼此“等价”的数值条件。研究者试图通过证明基于j-多重性的一般“积分依赖的专门化原则”来提供这样一个标准。研究者还提出了一个模块j-多重性的交点理论表达式,该表达式将产生计算该多重性的递归公式。理想的核心是对理想所有可能约简的信息进行编码的子域,它与Briancon-Skoda型定理和Kawamata关于线束截面的猜想密切相关。研究者希望探索核心和乘法器理想之间的联系,这是一个来自复杂代数几何的概念。他期望对这种相互作用的更好理解将为这两个概念带来新的启示,并可能导致对单项情况下核心的组合描述。在研究出一种计算零维单项式理想核心的算法之后,研究者现在希望找到一种计算任意维单项式理想的算法。关于理想核的已知结果需要对理想发生器的局部数以及残差或深度条件的限制,这些条件是任何零维理想所满足的假设。研究者建议将理论推进到满足这些条件的理想类别之外,使用单项案例作为试验场。作者的研究方向是交换代数,这是一个研究多变量多项式方程组定性研究的领域。这样的系统出现在代数几何中,但也出现在数学以外的许多应用中。在过去的二十年里,交换代数学者对计算方面越来越感兴趣,从而建立了与计算机代数、机器人、密码学、编码理论、统计学和生物学等应用领域的联系。这位研究者的研究也有很强的计算成分,他在等奇点理论方面的工作尤其包含了具体的几何应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernd Ulrich其他文献

Order ideals and a generalized Krull height theorem
  • DOI:
    10.1007/s00208-004-0513-6
  • 发表时间:
    2004-08-24
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Eisenbud;Craig Huneke;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Tangent star cones.
相切星锥。
The bi-graded structure of symmetric algebras with applications to Rees rings
  • DOI:
    10.1016/j.jalgebra.2016.08.014
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Kustin;Claudia Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Socle degrees, resolutions, and Frobenius powers
  • DOI:
    10.1016/j.jalgebra.2009.04.014
  • 发表时间:
    2009-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew R. Kustin;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
The equations of Rees algebras of ideals with linear presentation
  • DOI:
    10.1007/bf02572392
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Bernd Ulrich;Wolmer V. Vasconcelos
  • 通讯作者:
    Wolmer V. Vasconcelos

Bernd Ulrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernd Ulrich', 18)}}的其他基金

Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201149
  • 财政年份:
    2022
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
  • 批准号:
    1802383
  • 财政年份:
    2018
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Continuing Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
  • 批准号:
    1446115
  • 财政年份:
    2015
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
  • 批准号:
    1503605
  • 财政年份:
    2015
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Rees algebras and singularities
里斯代数和奇点
  • 批准号:
    1205002
  • 财政年份:
    2012
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Continuing Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
  • 批准号:
    0901367
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
  • 批准号:
    0819049
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
  • 批准号:
    0753127
  • 财政年份:
    2008
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
  • 批准号:
    0501011
  • 财政年份:
    2005
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
高阶微分方程的周期解及多重性
  • 批准号:
    11501240
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
  • 批准号:
    11301334
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
  • 批准号:
    2401049
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
  • 批准号:
    2422557
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Caring for Providers to Improve Patient Experience (CPIPE) Study
关爱医疗服务提供者以改善患者体验 (CPIPE) 研究
  • 批准号:
    10556284
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
Age-related differences in neurobiological systems supporting emotion
支持情绪的神经生物系统与年龄相关的差异
  • 批准号:
    10606216
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
A Stage 1 Pilot Test for Feasibility and Efficacy of a Multi-Level Intervention To Increase Physical Activity in Adults with Intellectual Disability: Step it Up +
第一阶段试点测试多层次干预措施的可行性和有效性,以增加智力障碍成人的体力活动:加快步伐
  • 批准号:
    10585633
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
How the short-term influence of drinking consequences shapes the development of expectancies: An event-level study
饮酒后果的短期影响如何影响预期的发展:一项事件级研究
  • 批准号:
    10748534
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
Perspectives of Correctional Officers about Older Adults in Prison: A Grounded Theory Study
惩教人员对监狱中老年人的看法:扎根理论研究
  • 批准号:
    10749275
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
Patient Priorities in Lung Transplant: Quality of Life Outcomes to Inform Decision Making
肺移植中患者的优先事项:生活质量结果为决策提供依据
  • 批准号:
    10592041
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
  • 批准号:
    10643212
  • 财政年份:
    2023
  • 资助金额:
    $ 30.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了