Rees algebras and singularities
里斯代数和奇点
基本信息
- 批准号:1205002
- 负责人:
- 金额:$ 25.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A general goal in equisingularity theory is to provide criteria for a family of analytic sets to be topologically trivial. Ideally, such criteria involve numerical data, like multiplicities, that only depend on the individual members rather than the total space of the family. In prior work the investigator established a sufficient condition for the Whitney equisingularity of families of arbitrary isolated singularities, using the new notion of epsilon multiplicity as numerical invariant. Now he wishes to prove the necessity of his condition for equisingularity, which would result in a fiber-wise numerical characterization of Whitney equisingularity in the case of isolated singularities. In addition, he intends to advance the general theory of epsilon multiplicity beyond the context of equisingularity theory. The investigator proposes a program to study rational curves in projective space, most notably rational plane curves, through the syzygy matrix of the forms parametrizing them. Solely from the syzygy matrix, he wishes to extract local information about the singularities of the curve and understand the global positioning of these singularities. In particular, he proposes to set up a correspondence between the types of singularities on the one hand and the shapes of the syzygy matrix on the other hand, and to use this correspondence to stratify the space of rational plane curves of a given degree. The investigator plans to continue his work on Rees algebras of ideals by studying the implicit equations of such algebras. Understanding or finding these equations is a fundamental and difficult problem in elimination theory that is wide open even for the simplest of ideals. The investigator intends to focus on ideals whose generators parametrize projective varieties. In order to bound the degrees of the implicit equations and to understand the Castelnuovo-Mumford regularity of the Rees algebra, he wishes to prove that the Rees algebra and the homogeneous coordinate ring of the variety have the same regularity. The investigator has the long-term goal to determine the defining equations explicitly if the parametrized variety is a rational plane curve.The proposed research is in the area of Commutative Algebra, a field of mathematics that has its roots in the qualitative study of systems of polynomial equations in several variables. Commutative Algebra has close ties to geometry, a connection that is prominent in the investigator's projects on equisingularity and rational curves. Systems of polynomial equations also arise in numerous applications outside of mathematics. The investigator's project on implicit equations of Rees algebras encompasses this applied aspect. In particular, the problem of finding implicit equations of surfaces defined parametrically has relevance in geometric modeling and computer-aided design, where it is known as implicitization problem.
等奇异性理论的一个一般目标是为一族解析集提供拓扑平凡的准则。理想情况下,这样的标准涉及数字数据,如多重性,只取决于单个成员,而不是家庭的总空间。在以前的工作中,研究者建立了一个充分条件的惠特尼equisingularity家庭的任意孤立奇点,使用新的概念,作为数值不变量的多重性。现在,他希望证明他的条件的必要性为equisingularity,这将导致一个纤维明智的数值表征惠特尼equisingularity的情况下,孤立的奇点。此外,他还试图在等奇异性理论的背景下,进一步发展一般的多重性理论。研究人员提出了一个程序来研究合理的曲线在射影空间,最显着的合理的平面曲线,通过syzygy矩阵的形式参数化他们。仅仅从syzygy矩阵,他希望提取局部信息的奇异性的曲线和了解全球定位这些奇点。特别是,他建议建立一个对应的类型之间的奇异性,一方面和形状的syzygy矩阵的另一方面,并利用这种对应分层空间的合理平面曲线的一个给定的程度。调查计划继续他的工作里斯代数的理想通过研究隐式方程等代数。理解或找到这些方程是消去理论中的一个基本而困难的问题,即使对于最简单的理想也是开放的。调查人员打算把重点放在理想的发电机parametrize投射品种。为了约束度的隐式方程和理解的Castelnuovo-Mumford正则性的里斯代数,他希望证明,里斯代数和齐次坐标环的品种有相同的规律性。研究者的长期目标是明确地确定定义方程,如果参数化的品种是一个合理的平面curve.The拟议的研究是在交换代数,数学领域,有其根源的定性研究系统的多项式方程在几个变量的领域。交换代数与几何学有着密切的联系,这种联系在研究者关于等奇异性和有理曲线的项目中非常突出。多项式方程组也出现在数学之外的许多应用中。调查员的项目隐含方程的里斯代数包括这方面的应用。特别是,寻找参数化定义的曲面的隐式方程的问题在几何建模和计算机辅助设计中具有相关性,其中它被称为隐式化问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernd Ulrich其他文献
Order ideals and a generalized Krull height theorem
- DOI:
10.1007/s00208-004-0513-6 - 发表时间:
2004-08-24 - 期刊:
- 影响因子:1.400
- 作者:
David Eisenbud;Craig Huneke;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Tangent star cones.
相切星锥。
- DOI:
10.1515/crll.1997.483.23 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Wolmer V. Vasconcelos;Bernd Ulrich;Aron Simis - 通讯作者:
Aron Simis
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Socle degrees, resolutions, and Frobenius powers
- DOI:
10.1016/j.jalgebra.2009.04.014 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
Andrew R. Kustin;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The equations of Rees algebras of ideals with linear presentation
- DOI:
10.1007/bf02572392 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Bernd Ulrich;Wolmer V. Vasconcelos - 通讯作者:
Wolmer V. Vasconcelos
Bernd Ulrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernd Ulrich', 18)}}的其他基金
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
- 批准号:
2201149 - 财政年份:2022
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
- 批准号:
1446115 - 财政年份:2015
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
- 批准号:
1503605 - 财政年份:2015
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
- 批准号:
0901367 - 财政年份:2009
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
- 批准号:
0901613 - 财政年份:2009
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
- 批准号:
0819049 - 财政年份:2009
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
- 批准号:
0753127 - 财政年份:2008
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
- 批准号:
0501011 - 财政年份:2005
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Categorification and KLR algebras
分类和 KLR 代数
- 批准号:
DP240101809 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Discovery Projects
Quantum algebras with supersymmetries
具有超对称性的量子代数
- 批准号:
DP240101572 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Discovery Projects
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2024
会议:C*-代数中的青年数学家 2024
- 批准号:
2404675 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shuffle algebras and vertex models
洗牌代数和顶点模型
- 批准号:
DP240101787 - 财政年份:2024
- 资助金额:
$ 25.68万 - 项目类别:
Discovery Projects