Algebra and Geometry Meetings in the Midwest

中西部的代数和几何会议

基本信息

  • 批准号:
    1446115
  • 负责人:
  • 金额:
    $ 4.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this activity is to contribute to the training of graduate students, to promote the exchange of ideas among scientists broadly located in the Midwest, and to advance research in Commutative Algebra and Algebraic Geometry through a series of conferences at Purdue University (August 10-14, 2015), at the University of Kentucky (May 2016), and at the University of Notre Dame (May 2017). The other institutions that are actively involved in these events are the University of Illinois at Chicago and the University of Illinois at Urbana-Champaign. The various research groups at these institutions have compatible interests, but at the same time complementary expertise, and collaborations are already ongoing. Many of the national and international experts in commutative algebra and algebraic geometry will be brought together, but there will also be ample opportunities for young researchers to present and discuss their work. In addition, every meeting will include a panel discussion about professional issues. This will help guide junior researchers through the critical transition from graduate school to academic employment.Commutative Algebra and Algebraic Geometry are vibrant fields with rich and ever evolving connections among them and to other areas of mathematics: Intriguing parallels between algebraic phenomena in prime characteristic and birational geometry are being explored, and maximal Cohen-Macaulay modules have found applications in physics. There have been important advances in the minimal model program, and in the study of free resolutions through the solution of the Boij-Soderberg conjecture. The central Midwest has a long tradition of excellence in these areas and a high concentration of commutative algebraists and algebraic geometers. Areas of common interests among our groups include birational geometry, Rees algebras, multiplier ideals, liaison theory, the homological conjectures, Hilbert functions, local cohomology, and combinatorial methods. The topic of the conference at Purdue will be Recent Advances in Commutative Algebra and its Interaction with Algebraic Geometry, with particular emphasis on multiplier ideals, characteristic p methods, and the homological conjectures. The meeting in Kentucky will focus on Free Resolutions and Representation Theoretic Methods. The emphasis of the conference at the Center for Mathematics at the University of Notre Dame will be Multiplicity Theory and Implicitization Problems.
这项活动的目标是有助于培养研究生,促进广泛分布在中西部的科学家之间的思想交流,并通过普渡大学的一系列会议推进交换代数和代数几何的研究(2015年8月10日至14日),在肯塔基州大学(2016年5月),并在圣母大学(2017年5月)。积极参与这些活动的其他机构是伊利诺伊大学芝加哥分校和伊利诺伊大学厄巴纳-香槟分校。这些机构的各个研究小组有着共同的兴趣,但同时也有互补的专业知识,合作已经在进行中。交换代数和代数几何的许多国家和国际专家将聚集在一起,但也将有足够的机会让年轻的研究人员介绍和讨论他们的工作。此外,每次会议都将包括关于专业问题的小组讨论。这将有助于指导初级研究人员从研究生院到学术就业的关键过渡。交换代数和代数几何是充满活力的领域,它们之间以及与其他数学领域的联系丰富且不断发展:正在探索素数特征和双有理几何中的代数现象之间的有趣相似之处,最大科恩-麦考利模已经在物理学中找到了应用。在最小模型程序和通过解决Boij-Soderberg猜想来研究自由解方面都有重要的进展。中部中西部在这些领域有着悠久的优秀传统,交换代数学家和代数几何学家高度集中。我们的团体之间的共同利益领域包括双有理几何,里斯代数,乘子理想,联络理论,同调代数,希尔伯特函数,局部上同调,和组合方法。会议的主题将在普渡大学的最新进展交换代数及其相互作用与代数几何,特别强调乘数理想,特征p方法,和同调代数。在肯塔基州举行的会议将重点讨论自由决议和表示论方法。在圣母大学数学中心的会议的重点将是多重性理论和隐含问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernd Ulrich其他文献

Order ideals and a generalized Krull height theorem
  • DOI:
    10.1007/s00208-004-0513-6
  • 发表时间:
    2004-08-24
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Eisenbud;Craig Huneke;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Tangent star cones.
相切星锥。
The bi-graded structure of symmetric algebras with applications to Rees rings
  • DOI:
    10.1016/j.jalgebra.2016.08.014
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Kustin;Claudia Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Socle degrees, resolutions, and Frobenius powers
  • DOI:
    10.1016/j.jalgebra.2009.04.014
  • 发表时间:
    2009-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew R. Kustin;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
The equations of Rees algebras of ideals with linear presentation
  • DOI:
    10.1007/bf02572392
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Bernd Ulrich;Wolmer V. Vasconcelos
  • 通讯作者:
    Wolmer V. Vasconcelos

Bernd Ulrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernd Ulrich', 18)}}的其他基金

Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201149
  • 财政年份:
    2022
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
  • 批准号:
    1802383
  • 财政年份:
    2018
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
  • 批准号:
    1503605
  • 财政年份:
    2015
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Rees algebras and singularities
里斯代数和奇点
  • 批准号:
    1205002
  • 财政年份:
    2012
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
  • 批准号:
    0901367
  • 财政年份:
    2009
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
  • 批准号:
    0901613
  • 财政年份:
    2009
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
  • 批准号:
    0819049
  • 财政年份:
    2009
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
  • 批准号:
    0753127
  • 财政年份:
    2008
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
  • 批准号:
    0501011
  • 财政年份:
    2005
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
  • 批准号:
    2412346
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 4.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了