Special Algebra Meetings in the Midwest
中西部特别代数会议
基本信息
- 批准号:0753127
- 负责人:
- 金额:$ 10.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-15 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT Special Algebra Meetings in the Midwest DMS - 0753127The goal of the activities supported by this grant is to create strong scientific interactions among the centers in Algebraic Geometry and Commutative Algebra that are located at Purdue University, the University of Illinois at Chicago, the University of Illinois at Urbana-Champaign, the University of Kentucky, and the University of Notre Dame. The various research groups at these institutions have compatible interests, but at the same time complementary expertise, and collaborations are already ongoing. Primarily, this goal will be achieved by promoting a series of bi-annual rotating conferences and by supporting the mobility of graduate students, junior faculty members, and visitors. These types of initiatives will help graduate students, postdocs and young faculty broaden their mathematical background and start new collaborations.Algebraic Geometry and Commutative Algebra have seen a great deal of advances in the past years, most notably through a recent breakthrough in the minimal model program. Particularly fruitful has been the interaction between the two fields, which will also be the focus of the activities supported by this grant. In addition, the advent of high-speed computers and the development of algorithms have led to a line of research in Algebra and Geometry that is close to applications. An area of common interest of the groups at Purdue, UI Chicago, Kentucky, and Notre Dame have been the topics of multiplier ideals, integral closures, and cores. The other areas of common interest among the groups at Purdue, UIC, and UIUC are intersection multiplicities and related problems, and the homological conjectures. Our groups approach these subjects from different points of views, ranging from complex analytic geometry to commutative algebra and combinatorics. This makes an exchange of ideas and the mutual training of graduate students even more crucial. The series of conferences will showcase recent progress in various areas of algebra and geometry, including Hilbert functions and multiplicities, Groebner bases and computational algebra, liaison theory, the homological conjectures, problems in positive and mixed characteristic, tight closure and its interaction with birational geometry, resolution of singularities, Rees algebras, multiplier ideals, cores and Briancon-Skoda type theorems. To this end many of the national and international experts in these areas will be brought together, but there will also be ample opportunities for young researchers to present and discuss their work. It is an implicit expectation that many new fruitful collaborations will emerge.
中西部特殊代数会议DMS-0753127该基金资助的活动的目标是在普渡大学、伊利诺伊大学芝加哥分校、伊利诺伊大学香槟分校、肯塔基大学和圣母大学的代数几何和交换代数中心之间建立强大的科学互动。这些机构的不同研究小组有着相容的利益,但同时也有互补的专长,合作已经在进行中。首先,这一目标将通过促进一系列两年一次的轮流会议和支持研究生、初级教职员工和来访者的流动来实现。这些类型的倡议将帮助研究生、博士后和年轻教师拓宽他们的数学背景,并开始新的合作。代数几何和交换代数在过去几年中取得了很大进展,最引人注目的是最近在最小模型程序方面取得了突破。这两个领域之间的互动尤其富有成果,这也将是这笔赠款支持的活动的重点。此外,高速计算机的出现和算法的发展导致了代数和几何领域一系列接近应用的研究。普渡大学、芝加哥大学、肯塔基大学和巴黎圣母院的团队共同感兴趣的一个领域是乘子理想、积分闭包和核心。普渡大学、UIC和UIUC的小组共同感兴趣的其他领域是交集重数和相关问题,以及同调猜想。我们的小组从不同的角度处理这些主题,从复杂的解析几何到交换代数和组合学。这使得思想交流和研究生的相互培养变得更加重要。该系列会议将展示代数和几何各个领域的最新进展,包括希尔伯特函数和重数,Groebner基和计算代数,联络理论,同调猜想,正特征和混合特征问题,紧闭包及其与双曲几何的相互作用,奇点的分解,Rees代数,乘子理想,核心和Briancon-Skoda型定理。为此,这些领域的许多国内和国际专家将聚集在一起,但青年研究人员也将有大量机会介绍和讨论他们的工作。这是一种含蓄的期望,即将出现许多新的富有成效的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernd Ulrich其他文献
Order ideals and a generalized Krull height theorem
- DOI:
10.1007/s00208-004-0513-6 - 发表时间:
2004-08-24 - 期刊:
- 影响因子:1.400
- 作者:
David Eisenbud;Craig Huneke;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Tangent star cones.
相切星锥。
- DOI:
10.1515/crll.1997.483.23 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Wolmer V. Vasconcelos;Bernd Ulrich;Aron Simis - 通讯作者:
Aron Simis
The bi-graded structure of symmetric algebras with applications to Rees rings
- DOI:
10.1016/j.jalgebra.2016.08.014 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kustin;Claudia Polini;Bernd Ulrich - 通讯作者:
Bernd Ulrich
Socle degrees, resolutions, and Frobenius powers
- DOI:
10.1016/j.jalgebra.2009.04.014 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
Andrew R. Kustin;Bernd Ulrich - 通讯作者:
Bernd Ulrich
The equations of Rees algebras of ideals with linear presentation
- DOI:
10.1007/bf02572392 - 发表时间:
1993-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Bernd Ulrich;Wolmer V. Vasconcelos - 通讯作者:
Wolmer V. Vasconcelos
Bernd Ulrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernd Ulrich', 18)}}的其他基金
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
- 批准号:
2317351 - 财政年份:2023
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
- 批准号:
2201149 - 财政年份:2022
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
- 批准号:
1446115 - 财政年份:2015
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
- 批准号:
1503605 - 财政年份:2015
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
- 批准号:
0901367 - 财政年份:2009
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
- 批准号:
0901613 - 财政年份:2009
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
- 批准号:
0819049 - 财政年份:2009
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
- 批准号:
0501011 - 财政年份:2005
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 10.9万 - 项目类别:
Standard Grant