Regenerative Nanosensors for Quantitative Assessment of Oxidative Stress in Neurodegeneration
用于定量评估神经退行性氧化应激的再生纳米传感器
基本信息
- 批准号:0901760
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual MeritReactive oxygen species (ROS) and oxidative stress are major contributors to the pathogenesis of important neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and cerebrovascular disease. The central nervous system comprises the most oxidatively active organ system in the body. Under normal physiological conditions, brain activity- and the neuronal and synaptic processes underpinning this activity- generates free radical species that progressively damage essential biomolecules (nucleic acids, lipids, proteins). Under a variety of pathological states, ROS-mediated oxidative damage is dramatically accelerated and leads to irreversible brain damage, cerebral dysfunction, cognitive decline, and death. An overwhelming body of scientific evidence now points to ROS-mediated oxidative damage as a key pathogenic pathway involved in the earliest stages of many neurodegenerative diseases. Technology to quantitatively detect and monitor ROS is critical for understanding and treating these disorders, Currently available ROS assay systems (1) detect only a single (or at most a limited number) of biological relevant species, (2) chemically interact with the species under analysis, (3) require complex, time-consuming, labor-intensive analytical processing, and (4) are temporally disconjugate with respect to the short half-lives of most biologically relevant ROS species. This last point is especially important and frequently overlooked. By the time analytical measurements are initiated using conventional methods, significant loss of signal has accrued due to decomposition. For all of these reasons, available ROS detection technology does not meet the analytical standards required for modern biomedical research. A transformative research program to develop an innovative nanotechnology-based toolkit for measuring ROS in biological systems is proposed. A non-enzymatic probe (nanoceria), integrated sensor components, and simplified detection procedure will enable sequential analytical operation on a small, inexpensive chip. An outstanding merit of the proposed approach is the use of a versatile nanoparticle detector array that generates a detectable amperometric signal following oxidation state alterations induced by interaction with ROS. The proposed technology development program will enable fundamental studies of neurodegenerative disease pathogenesis that have not been previously possible. Broader ImpactThe outcome of this research is linked to high-impact national healthcare priorities. The program will establish an interdisciplinary collaboration between the University of Central Florida; Boston University School of Medicine, College of Engineering, and Photonics Center; and the National Institutes of Health (NIH)-funded Alzheimer's Disease Center at Boston University. Education and training are essential components and leverages graduate and undergraduate teaching opportunities, coursework (including a highly successful internet-based off-site access program), and summer research programming. Additional emphasis will focus on minority and K-12 students who participate in on-campus interdisciplinary educational programs at both institutions. The proposed research and educational activities will provide a unique cross-dimensional (nano-to-meso scale) and cross-disciplinary (materials, electrochemistry, fluid mechanics, electrical engineering, neurobiology) approach for development of innovative non-enzyme biosensors with far-ranging biomedical impact. This research will deepen understanding of electrochemical and biochemical reactions at the nanoscale and affords significant potential to provide new insights into the pathogenic role of ROS in human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and stroke.
活性氧(ROS)和氧化应激是重要的神经退行性疾病(包括阿尔茨海默病、帕金森病和脑血管病)的发病机制的主要贡献者。中枢神经系统是人体内最具氧化活性的器官系统。在正常的生理条件下,大脑活动-以及支持这种活动的神经元和突触过程-产生自由基物质,逐渐破坏基本的生物分子(核酸,脂质,蛋白质)。在多种病理状态下,ROS介导的氧化损伤显著加速,并导致不可逆的脑损伤、脑功能障碍、认知能力下降和死亡。 大量的科学证据表明ROS介导的氧化损伤是许多神经退行性疾病早期阶段的关键致病途径。定量检测和监测ROS的技术对于理解和治疗这些病症至关重要。(或至多有限数量的)生物相关物种,(2)与被分析的物种化学相互作用,(3)需要复杂、耗时、劳动密集型的分析处理,和(4)相对于大多数生物学相关的ROS种类的短半衰期是暂时不共轭的。最后一点特别重要,但经常被忽视。到使用常规方法开始分析测量时,由于分解已经累积了显著的信号损失。由于所有这些原因,现有的ROS检测技术不符合现代生物医学研究所需的分析标准。提出了一个变革性的研究计划,以开发一个创新的基于纳米技术的工具包,用于测量生物系统中的ROS。非酶探针(纳米氧化铈),集成的传感器组件和简化的检测程序将使小,便宜的芯片上的顺序分析操作。所提出的方法的一个突出优点是使用一个多功能的纳米粒子检测器阵列,产生可检测的电流信号后,氧化态的改变与ROS的相互作用引起的。拟议的技术开发计划将使以前不可能的神经退行性疾病发病机制的基础研究成为可能。更广泛的影响这项研究的结果与高影响力的国家医疗保健优先事项有关。该计划将在中佛罗里达大学之间建立跨学科合作;波士顿大学医学院、工程学院和光子学中心;以及美国国立卫生研究院(NIH)资助的波士顿大学阿尔茨海默病中心。教育和培训是必不可少的组成部分,并利用研究生和本科教学机会,课程(包括非常成功的基于互联网的场外访问计划)和夏季研究计划。额外的重点将集中在少数民族和K-12学生谁参加校园跨学科教育计划在这两个机构。拟议的研究和教育活动将提供一个独特的跨维度(纳米到中尺度)和跨学科(材料,电化学,流体力学,电气工程,神经生物学)的方法,用于开发具有广泛生物医学影响的创新非酶生物传感器。这项研究将加深对纳米级电化学和生物化学反应的理解,并为ROS在人类神经退行性疾病(包括阿尔茨海默病,帕金森病和中风)中的致病作用提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Goldstein其他文献
Diabetes induces impaired endothelial progenitor cell mobilization that is significantly reversed under hyperoxic conditions
- DOI:
10.1016/j.jamcollsurg.2006.05.263 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Katherine A. Gallagher;Lee Goldstein;April Nedeau;Donald Buerk;Stephen Thom;Omaida Velazquez - 通讯作者:
Omaida Velazquez
Non-therapeutic anti-FXa levels are common among medical ward patients treated with enoxaparin
- DOI:
10.1007/s00277-011-1208-1 - 发表时间:
2011-03-16 - 期刊:
- 影响因子:2.400
- 作者:
Walid Saliba;Orna Nitzan;Wasseem Rock;Gilat Ron;Luci Zalman;Lee Goldstein;Idit Lavi;Mazen Elias - 通讯作者:
Mazen Elias
Description of a point-of-care testing program in a large urban academic medical center: Technologies, management and program cost
- DOI:
10.1016/j.cca.2021.08.021 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Elizabeth-Lee Lewandrowski;Kimberly Gregory;Jeannette Le;Lee Goldstein;Kent Lewandrowski - 通讯作者:
Kent Lewandrowski
SDF-1A and hyperoxia synergistically increase circulating endothelial progenitor cells and wound healing in diabetic mice
- DOI:
10.1016/j.jamcollsurg.2006.05.102 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Katherine A. Gallagher;Lee Goldstein;April Nedeau;Haiying Chen;Don Buerk;Jun Lui;Stephen Thom;Omaida Velazquez - 通讯作者:
Omaida Velazquez
Anévrysme rompu de l'artère sciatique persistante contrôlé par embolisation endovasculaire
- DOI:
10.1016/j.acvfr.2010.06.008 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Combiz Rezayat;Elliot Sambol;Lee Goldstein;Stephen R. Broderick;John K. Karwowski;James F. McKinsey;Ageliki G. Vouyouka - 通讯作者:
Ageliki G. Vouyouka
Lee Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Goldstein', 18)}}的其他基金
MRI: Acquistion of Femtosecond UV-Laser Ablation System for Elemental & Isotopic Mapping by Hyphenated Sector Field ICP-MS
MRI:获取用于元素的飞秒紫外激光消融系统
- 批准号:
0821304 - 财政年份:2008
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
相似海外基金
Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
- 批准号:
2344525 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
DNA Nanosensors for Metal Ion Cancer Biomarkers
用于金属离子癌症生物标志物的 DNA 纳米传感器
- 批准号:
2878134 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Studentship
High specificity nanosensors for glycobiology
用于糖生物学的高特异性纳米传感器
- 批准号:
DP230102307 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Discovery Projects
Generalizable Nanosensors for Probing Highly Specific Interactions of Protein Kinases
用于探测蛋白激酶高度特异性相互作用的通用纳米传感器
- 批准号:
10719635 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
EAGER: Plasmonic Sensing in Liquid with Metal-Insulator-Metal Nanosensors Embedded in Soft Matrices
EAGER:使用嵌入软基体中的金属-绝缘体-金属纳米传感器在液体中进行等离子体传感
- 批准号:
2332818 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Lab-on-chip with embedded nanosensors for high throughput analysis
具有嵌入式纳米传感器的片上实验室,用于高通量分析
- 批准号:
RGPIN-2018-06232 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Discovery Grants Program - Individual
Development of Next Generation Plasmonic Nanosensors for Ultrasensitive, High-Throughput Nucleic Acid and Protein Assays
开发用于超灵敏、高通量核酸和蛋白质测定的下一代等离子体纳米传感器
- 批准号:
2204681 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Developing and applying fluorescent nanosensors for biological measurement.
开发和应用用于生物测量的荧光纳米传感器。
- 批准号:
2739956 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Studentship
Determining extremophiles biological extremities with fluorescent nanosensors
用荧光纳米传感器确定极端微生物的生物肢体
- 批准号:
2707629 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Studentship
Rapid and affordable magneto-nanosensors for ctDNA-guided lung cancer management
用于 ctDNA 引导肺癌管理的快速且经济实惠的磁纳米传感器
- 批准号:
10674758 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:














{{item.name}}会员




