Presentations of Groups by Generators and Defining Relations

通过生成器和定义关系来表示组

基本信息

  • 批准号:
    0901782
  • 负责人:
  • 金额:
    $ 24.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

This project will focus on some outstanding problems of geometric group theory such as the Andrews-Curtis conjecture on balanced presentations of the trivial group, the Burnside problem for periodic groups, the Hanna Neumann conjecture on the rank of the intersection of subgroups in free groups. The notorious Andrews-Curtis conjecture claims that a balanced presentation of the trivial group can be transformed into the standard presentation by a finite sequence of extended Nielsen operations, also called elementary AC-moves. Andrews and Curtis speculated that one type of their elementary AC-moves, which is conjugation, could be replaced by a much more restrictive operation of cyclic permutation, thus making a hypothesis that their conjecture is equivalent to its presumably stronger "cyclic" version. The Principal Investigator (PI) will attempt to establish this equivalence. The PI will work on other questions related to balanced presentations of the trivial group, such as the stabilized version of a conjecture of Magnus and asymptotic functions associated with the presentations. Another goal of the project is to find new applications of the geometric machinery of graded diagrams created by the PI to solve one of the most influential algebraic problems of the 20th century, the Burnside problem on periodic groups for large even exponents. In addition, the PI will work on questions related to the Hanna Neumann conjecture on the intersection of subgroups in free groups, on algorithmic and computational complexity issues in group theory and 3-dimensional topology.This research project is in the area of the theory of groups that investigates groups, defined by means of generators and defining relations, and lies at the intersection of the theory of groups with low-dimensional topology, geometry and mathematical logic. The theory of groups is a mathematical theory of symmetries of spaces which interacts with many other disciplines, for example, physics and chemistry outside of mathematics, coding theory, number theory, topology and geometry inside mathematics.
本项目将重点研究几何群论中的一些突出问题,如关于平凡群的平衡表示的Andrews-Curtis猜想,周期群的伯恩赛德问题,关于自由群中子群交的秩的Hanna Neumann猜想。著名的Andrews-Curtis猜想声称平凡群的平衡表示可以通过有限序列的扩展尼尔森运算(也称为初等AC-移动)转换为标准表示。安德鲁斯和柯蒂斯推测,他们的一种基本AC移动,即共轭,可以被一种更具限制性的循环置换操作所取代,从而提出一个假设,即他们的猜想等价于其可能更强的“循环”版本。主要研究者(PI)将尝试确定这种等效性。PI将研究与平凡群的平衡演示相关的其他问题,例如马格努斯猜想的稳定版本和与演示相关的渐近函数。该项目的另一个目标是找到新的应用程序的几何机械的分级图创建的PI解决一个最有影响力的代数问题的20世纪世纪,伯恩赛德问题的周期群大甚至指数。此外,PI还将研究与自由群中子群相交的Hanna Neumann猜想相关的问题,群论和三维拓扑中的算法和计算复杂性问题。本研究项目涉及群论领域,研究通过生成元和定义关系定义的群,并且处于群论与低维拓扑学、几何学和数理逻辑的交叉点。群论是空间对称性的数学理论,它与许多其他学科相互作用,例如数学之外的物理和化学,编码理论,数论,数学内部的拓扑和几何。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergei Ivanov其他文献

Accurate prediction of macroscopic temperature field in direct laser deposition of large-scale parts using simplified heat source
  • DOI:
    10.1007/s40964-024-00920-6
  • 发表时间:
    2024-12-23
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Sergei Ivanov;Rudolf Korsmik;Ekaterina Valdaytseva;Aleksandr Ivanov
  • 通讯作者:
    Aleksandr Ivanov
Quantum-confined stark effect and localization of charge carriers in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells with different morphologies
不同形貌Al0.3Ga0.7N/Al0.4Ga0.6N量子阱中量子限制斯塔克效应及载流子局域化
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. A. Shevchenko;V. Jmerik;A. Mizerov;A. A. Sitnikova;Sergei Ivanov;A. Toropov
  • 通讯作者:
    A. Toropov
Antioxidant capacity of herbal teas from Bulgarian market
保加利亚市场花草茶的抗氧化能力
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elena Shopova;Sergei Ivanov;L. Brankova;D. Moyankova;Desisslava Georgieva;Djovani Polizoev;D. Djilianov
  • 通讯作者:
    D. Djilianov
Local monotonicity of Riemannian and Finsler volume with respect to boundary distances
  • DOI:
    10.1007/s10711-012-9760-y
  • 发表时间:
    2012-07-25
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Sergei Ivanov
  • 通讯作者:
    Sergei Ivanov
Learning Connectivity Patterns via Graph Kernels for fMRI-Based Depression Diagnostics
通过图内核学习连接模式以进行基于功能磁共振成像的抑郁症诊断

Sergei Ivanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergei Ivanov', 18)}}的其他基金

Free Burnside Groups and Related Topics
免费伯恩赛德团体和相关主题
  • 批准号:
    0400746
  • 财政年份:
    2004
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Continuing Grant
Research in Combinatorial Group Theory
组合群论研究
  • 批准号:
    0099612
  • 财政年份:
    2001
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Continuing Grant
Burnside Groups and Related Topics
伯恩赛德团体及相关主题
  • 批准号:
    9801500
  • 财政年份:
    1998
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Infinite Periodic Groups
数学科学:无限周期群
  • 批准号:
    9501056
  • 财政年份:
    1995
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Standard Grant

相似海外基金

Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Standard Grant
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
  • 批准号:
    ES/Y010639/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Research Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
  • 批准号:
    2402553
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
  • 批准号:
    2346615
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Standard Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
  • 批准号:
    23K25768
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
'Leaders Like Us': Co-designing a framework to develop young physical activity leader programmes for girls from underserved groups
“像我们这样的领导者”:共同设计一个框架,为来自服务不足群体的女孩制定年轻的体育活动领导者计划
  • 批准号:
    MR/Z503976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
  • 批准号:
    2241230
  • 财政年份:
    2024
  • 资助金额:
    $ 24.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了