Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
基本信息
- 批准号:0904589
- 负责人:
- 金额:$ 80.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to further develop and apply the various Floer homology theories of knots and three-manifolds that arise from gauge theories. In particular, the Principal Investigator will further develop a Floer homology theory for knots, arising from instantons with codimension-2 singularities, and will investigate its relationship to Khovanov homology. A spectral sequence will be established relating the two homology theories. He will investigate whether one can prove the non-triviality of the Floer theory arising from singular instantons, with a view towards showing that Khovanov homology detects the unknot. The instanton homology theory of sutured manifolds, recently developed by the PI and Mrowka, will be further explored. It will be proved that the resulting Floer homology of links recovers the multi-variable Alexander polynomial. In a similar spirit, the instanton homology of closed 3-manifolds will be shown to recover the Reidemeister torsion. The PI will define invariants of transverselinks: links transverse to the standard contact structure in the three-sphere or other 3-manifolds. These invariants will reside in the link Floer homology groups arising from the instanton theory on sutured manifolds.Topology is the qualitative study of space and its connectedness. Its importance was recognized at the turn of the last century by the French mathematician Poincare, during his investigation of the laws of motion that govern the movement of a three-body system such as the Earth, Moon and Sun moving according to Newton's laws. In the past twenty years, topology has seen applications in questions such as the knotting of proteins and DNA, and in modern theories of high-energy physics. The topology of three-dimensional spaces, as opposed to those of higher dimension, is of particular subtlety. In recent years, a wealth of new techniques have been introduced to study the phenomena that arise in dimension three. This project will further develop these new techniques, and will explore the mysterious relationships between them. In so doing, the project will deepen our understanding of topology and its interaction with other areas of mathematics and science. At the same time, the project will train graduate students and disseminate results to researchers in the area.
该项目的目的是进一步发展和应用规范理论中产生的结和三流形的各种Floer同调理论。特别是,首席研究员将进一步发展一个Floer同源理论的结,从瞬子与余维2奇点,并将调查其关系到Khovanov同源。一个光谱序列将建立有关的两个同源性理论。 他将调查是否可以证明非平凡的弗洛尔理论所产生的奇异瞬子,以期表明霍瓦诺夫同源检测unknot。 缝合流形的瞬子同调理论,最近开发的PI和Mrowka,将进一步探讨。将证明由此产生的链接的Floer同调恢复多变量亚历山大多项式。在类似的精神下,封闭三维流形的瞬子同调将被证明恢复雷德迈斯特挠率。 PI将定义transverselink的不变量:在三球或其他3流形中横向于标准接触结构的链接。这些不变量将驻留在链接弗洛尔同调群产生的瞬子理论缝合流形。拓扑学是定性研究空间及其连通性。 它的重要性在上个世纪之交被法国数学家庞加莱认识到,在他对支配三体系统运动的运动定律的研究中,如地球,月球和太阳根据牛顿定律运动。 在过去的20年里,拓扑学已经在蛋白质和DNA的打结等问题以及高能物理的现代理论中得到了应用。 三维空间的拓扑结构,与高维空间的拓扑结构相反,特别微妙。 近年来,大量的新技术已经被引入到研究三维空间中出现的现象。这个项目将进一步发展这些新技术,并将探索它们之间的神秘关系。通过这样做,该项目将加深我们对拓扑学及其与数学和科学其他领域的相互作用的理解。同时,该项目将培训研究生,并向该领域的研究人员传播成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kronheimer其他文献
Peter Kronheimer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kronheimer', 18)}}的其他基金
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
- 批准号:
2304877 - 财政年份:2023
- 资助金额:
$ 80.37万 - 项目类别:
Standard Grant
Instanton Homology in Low-Dimensional Topology
低维拓扑中的瞬时同调
- 批准号:
2005310 - 财政年份:2020
- 资助金额:
$ 80.37万 - 项目类别:
Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
- 批准号:
0405271 - 财政年份:2004
- 资助金额:
$ 80.37万 - 项目类别:
Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
- 批准号:
0100771 - 财政年份:2001
- 资助金额:
$ 80.37万 - 项目类别:
Standard Grant
Floer Homology and Homology Cobordisms
弗洛尔同调和同调配边
- 批准号:
9971731 - 财政年份:1999
- 资助金额:
$ 80.37万 - 项目类别:
Standard Grant
Mathematical Sciences: Gauge Theory Geometry in Dimensions Three and and Four
数学科学:三维、四维规范场几何
- 批准号:
9531964 - 财政年份:1996
- 资助金额:
$ 80.37万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2021
- 资助金额:
$ 80.37万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2020
- 资助金额:
$ 80.37万 - 项目类别:
Discovery Grants Program - Individual
Supersymmetric Gauge Theory and Enumerative Geometry
超对称规范理论与枚举几何
- 批准号:
EP/T004746/1 - 财政年份:2019
- 资助金额:
$ 80.37万 - 项目类别:
Fellowship
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2019
- 资助金额:
$ 80.37万 - 项目类别:
Discovery Grants Program - Individual
Supersymmetric Gauge Theory and Enumerative Geometry
超对称规范理论与枚举几何
- 批准号:
2182025 - 财政年份:2019
- 资助金额:
$ 80.37万 - 项目类别:
Studentship
Emergence of Integrability in Gauge Theory and Random Geometry Probed by Matrix and Tensor Models
矩阵和张量模型探讨规范理论和随机几何中可积性的出现
- 批准号:
19K03828 - 财政年份:2019
- 资助金额:
$ 80.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2018
- 资助金额:
$ 80.37万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2017
- 资助金额:
$ 80.37万 - 项目类别:
Discovery Grants Program - Individual
Symplectic geometry and Chern-Simons gauge theory
辛几何和陈-西蒙斯规范理论
- 批准号:
RGPIN-2016-05635 - 财政年份:2016
- 资助金额:
$ 80.37万 - 项目类别:
Discovery Grants Program - Individual
Microlocal Geometry in Gauge Theory
规范理论中的微局域几何
- 批准号:
1502178 - 财政年份:2015
- 资助金额:
$ 80.37万 - 项目类别:
Continuing Grant