Gauge Theory and Spatial Graphs

规范理论和空间图

基本信息

  • 批准号:
    1707924
  • 负责人:
  • 金额:
    $ 26.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This project will connect two areas of modern research in mathematics: the first is topology, the second is graph theory and network flows. Topology is the qualitative study of space and its connectedness. Its importance was recognized at the turn of the last century by the French mathematician Poincare, during his investigation of the laws of motion that govern the movement of a three-body system such as the Earth, Moon and Sun moving according to Newton's laws. In the past twenty years, topology has seen applications in questions such as the knotting of and proteins DNA, and in modern theories of high-energy physics. The topology of three-dimensional spaces, as opposed to those of higher dimension, is of particular subtlety. Graph theory also has a long history. It is the mathematical theory of networks and their connections, and sees application in many aspects computer science, algorithms and optimization. By viewing networks as embedded in three-dimensional space, this project aims to use techniques from topology to study questions in graph theory. The topological techniques will be drawn from many sources, but particularly from gauge theory, a field having its origins in fundamental physics. The project will deepen our understanding of topology and its interaction with other areas of mathematics and science. At the same time, the project will train graduate students and disseminate results to researchers in the area.The project activity will be in the following specific areas. In collaboration with T. S. Mrowka, the PI will develop properties of an instanton homology for spatial trivalent graphs. This instanton homology was constructed in previous work using a gauge theory related to representations of the fundamental group of the graph's complement in the group of rotations, SO(3). The PI will investigate the dimension of the SO(3) instanton homology for general planar trivalent graphs. It is expected that the dimension is always related to the number of three-edge-colorings of the graph. As a stepping stone towards the proof, an variant of the instanton homlogy will be constructed using the larger group SU(3), and fixed-point theory will be used to compare the two versions. If the previous two goals are achieved, it will follow from this and other work that every bridgeless, planar trivalent graph admits at least one three-edge-coloring, a major result in the field, as it is equivalent to the four-color theorem, which is the statement that the regions of any planar map can be colored using only four colors. The four-color theorem has been proved previously only with computer assistance, and it is hoped that this project might therefore lead the way to the first human-readable proof.
这个项目将连接两个领域的现代数学研究:第一个是拓扑学,第二个是图论和网络流。拓扑学是对空间及其连通性的定性研究。它的重要性在上个世纪之交被法国数学家庞加莱认识到,在他对支配三体系统运动的运动定律的研究中,如地球,月球和太阳根据牛顿定律运动。 在过去的20年里,拓扑学已经在一些问题中得到应用,如DNA的打结和蛋白质,以及高能物理的现代理论。 三维空间的拓扑结构,与高维空间的拓扑结构相反,特别微妙。图论也有很长的历史。它是网络及其连接的数学理论,在计算机科学,算法和优化的许多方面都有应用。通过将网络视为嵌入在三维空间中,该项目旨在使用拓扑技术来研究图论中的问题。拓扑技术将从许多来源,但特别是从规范理论,一个领域有其起源于基础物理学。该项目将加深我们对拓扑学及其与数学和科学其他领域的相互作用的理解。同时,该项目将培训研究生,并向该领域的研究人员传播成果。与T. S. Mrowka,PI将开发空间三价图的瞬子同调的性质。这种瞬子同调是在以前的工作中使用规范理论构造的,该规范理论与旋转群SO(3)中图的补图的基本群的表示有关。PI将研究一般平面三价图的SO(3)瞬子同调的维数。期望维数总是与图的三边着色数有关。作为证明的垫脚石,我们将使用更大的群SU(3)来构造瞬子同调的一个变体,并使用不动点理论来比较这两个版本。如果前两个目标得以实现,那么从这项工作和其他工作中可以得出,每个无桥平面三价图至少允许一个三边着色,这是该领域的一个主要结果,因为它等价于四色定理,四色定理是任何平面地图的区域可以只用四种颜色着色的陈述。四色定理以前只在计算机辅助下被证明,希望这个项目可能因此导致第一个人类可读的证明。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A deformation of instanton homology for webs
网瞬子同调的变形
  • DOI:
    10.2140/gt.2019.23.1491
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Kronheimer, Peter B;Mrowks, Tomasz
  • 通讯作者:
    Mrowks, Tomasz
Instantons and Bar-Natan homology
瞬子和巴-纳坦同源性
  • DOI:
    10.1112/s0010437x2000768x
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Kronheimer, P. B.;Mrowka, T. S.
  • 通讯作者:
    Mrowka, T. S.
Instantons and some concordance invariants of knots
瞬子和结的一些一致性不变量
The Dehn twist on a sum of two $K3$ surfaces
两个 $K3$ 曲面之和上的 Dehn 扭曲
  • DOI:
    10.4310/mrl.2020.v27.n6.a8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Kronheimer, P. B.;Mrowka, T. S.
  • 通讯作者:
    Mrowka, T. S.
KNOTS, THREE-MANIFOLDS AND INSTANTONS
结、三歧管和瞬时
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Kronheimer其他文献

Peter Kronheimer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Kronheimer', 18)}}的其他基金

Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
  • 批准号:
    2304877
  • 财政年份:
    2023
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Standard Grant
Instanton Homology in Low-Dimensional Topology
低维拓扑中的瞬时同调
  • 批准号:
    2005310
  • 财政年份:
    2020
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Continuing Grant
Gauge theory and spatial graphs
规范理论和空间图
  • 批准号:
    1405652
  • 财政年份:
    2014
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
  • 批准号:
    0904589
  • 财政年份:
    2009
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
  • 批准号:
    0405271
  • 财政年份:
    2004
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
  • 批准号:
    0100771
  • 财政年份:
    2001
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Standard Grant
Floer Homology and Homology Cobordisms
弗洛尔同调和同调配边
  • 批准号:
    9971731
  • 财政年份:
    1999
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Gauge Theory Geometry in Dimensions Three and and Four
数学科学:三维、四维规范场几何
  • 批准号:
    9531964
  • 财政年份:
    1996
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2412923
  • 财政年份:
    2023
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Standard Grant
Theory, Methods, and Resources for Understanding and Leveraging Spatial Variation in Population Genetic Data
理解和利用群体遗传数据空间变异的理论、方法和资源
  • 批准号:
    10623985
  • 财政年份:
    2023
  • 资助金额:
    $ 26.72万
  • 项目类别:
Spatial and Temporal Trends in Urban Wildlife Biodiversity, Occurrence, and Adaptations Across an Urban-Rural Gradient: Theory and Practice
城乡梯度下城市野生动物生物多样性、发生和适应的时空趋势:理论与实践
  • 批准号:
    569787-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Bridging spatial and evolutionary game theory: Implications in mathematical oncology
连接空间博弈论和进化博弈论:对数学肿瘤学的影响
  • 批准号:
    EP/W003074/1
  • 财政年份:
    2022
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Fellowship
Spatial gradients in dynamics of near-interface polymers: Experiments and theory
近界面聚合物动力学的空间梯度:实验和理论
  • 批准号:
    2211573
  • 财政年份:
    2022
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Continuing Grant
Establishment of an applied methodology for geographical and economic impacts of transportation infrastructure projects based on spatial economic theory
基于空间经济理论建立交通基础设施项目地理和经济影响的应用方法
  • 批准号:
    22H01617
  • 财政年份:
    2022
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2210371
  • 财政年份:
    2022
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Standard Grant
Theory building on spatial planning for community gardens in cooperation with social welfare facilities
与社会福利设施合作的社区花园空间规划理论构建
  • 批准号:
    21K14870
  • 财政年份:
    2021
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Intertextual Study of 19th-century British Literature through Relating Narratology to Spatial Theory
叙事学与空间理论的互文研究 19 世纪英国文学
  • 批准号:
    20K12964
  • 财政年份:
    2020
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Land fragmentation and spatial land market - Theory, evidence, and policy
土地碎片化和空间土地市场——理论、证据和政策
  • 批准号:
    20K06271
  • 财政年份:
    2020
  • 资助金额:
    $ 26.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了