Floer Homology and Homology Cobordisms
弗洛尔同调和同调配边
基本信息
- 批准号:9971731
- 负责人:
- 金额:$ 8.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-9971731PI: Kim FroyshovThis project is concerned with Yang-Mills and Seiberg-Witten Floer homology groups of oriented homology 3-spheres Y. In his earlier work on rational Yang-Mills Floer theory the principal investigator has shown that interaction between irreducible flat connections and the trivial connection over Y can be described by a single integer. This integer is an invariant of the homology cobordism class of Y, and is additive under connected sums. The invariant is positive if Y bounds a smooth 4-manifold with non-standard negative definite intersection form. In the first part of the project the principal investigator will study the corresponding invariant in rational Seiberg-Witten Floer theory, which is defined for oriented rational homology 3-spheres with a spin-c structure. The second part will focus on the relationship between these two invariants in the case of integral homology spheres, using PU(2) monopoles. The object of the third part of the project will be to understand the homology cobordism invariants arising from Yang-Mills Floer theory with mod 2 coefficients. These invariants do not seem to have any analogues in Seiberg-Witten theory.Broadly speaking, the principal investigator will study spaces of dimension3 and 4 using certain non-linear partial differential equations from theoretical physics.
提案:DMS-9971731 PI:Kim Froyshov本项目涉及定向同调3-球面Y的Yang-Mills和Seiberg-Witten Floer同调群。在他早期的工作理性杨米尔斯弗洛尔理论的主要研究者表明,相互作用之间的不可约平坦的联系和平凡的联系超过Y可以描述一个单一的整数。这个整数是Y的同调配边类的不变量,并且在连通和下是可加的。如果Y是一个具有非标准负定交形式的光滑4-流形的边界,则该不变量是正的。在该项目的第一部分,主要研究者将研究理性Seiberg-Witten Floer理论中相应的不变量,该理论定义为具有自旋c结构的定向理性同调3-球。第二部分将集中在这两个不变量之间的关系,在积分同调球的情况下,使用PU(2)单极。该项目的第三部分的目的将是了解的同调配边不变量所产生的杨米尔斯弗洛尔理论与模2系数。这些不变量似乎在Seiberg-Witten理论中没有任何类似物。广义地说,主要研究者将使用理论物理中的某些非线性偏微分方程来研究3维和4维空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kronheimer其他文献
Peter Kronheimer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kronheimer', 18)}}的其他基金
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
- 批准号:
2304877 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant
Instanton Homology in Low-Dimensional Topology
低维拓扑中的瞬时同调
- 批准号:
2005310 - 财政年份:2020
- 资助金额:
$ 8.37万 - 项目类别:
Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
- 批准号:
0904589 - 财政年份:2009
- 资助金额:
$ 8.37万 - 项目类别:
Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
- 批准号:
0405271 - 财政年份:2004
- 资助金额:
$ 8.37万 - 项目类别:
Continuing Grant
Gauge Theory and Geometry in Dimensions Three and Four
三维和四维的规范理论和几何
- 批准号:
0100771 - 财政年份:2001
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant
Mathematical Sciences: Gauge Theory Geometry in Dimensions Three and and Four
数学科学:三维、四维规范场几何
- 批准号:
9531964 - 财政年份:1996
- 资助金额:
$ 8.37万 - 项目类别:
Continuing Grant
相似海外基金
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Structures in Khovanov-Rozansky homology
Khovanov-Rozansky 同源结构
- 批准号:
2302305 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant
The role of reticulon homology domain (RHD) protein and related family members in the sarco(endo)plasmic formation and regulation in the cardiac myocyte
网织同源结构域(RHD)蛋白及相关家族成员在心肌细胞肌(内)质形成和调节中的作用
- 批准号:
488705 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Operating Grants
A study on the homology group of symplectic derivation Lie algebras
辛导李代数同调群的研究
- 批准号:
22KJ0912 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hidden Symmetries: Internal and External Equivariance in Floer Homology
隐藏的对称性:Floer 同调中的内部和外部等变
- 批准号:
2303823 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
- 批准号:
2304877 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Continuing Grant
Research Initiation Award: Toward Understanding Persistent Homology in Topological Data Analysis
研究启动奖:理解拓扑数据分析中的持久同源性
- 批准号:
2300360 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant