The Geometry and Dynamics of Symplectic Manifolds
辛流形的几何和动力学
基本信息
- 批准号:0905191
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0905191Principal Investigator: Dusa McDuffSince a symplectic structure allows one to measure the areas oftwo dimensional surfaces, it is natural that the two dimensionalsubmanifolds of a symplectic manifold are key elements of theirglobal structure. The choice of an auxiliary almost complexstructure J determines a specially interesting class of suchsurfaces, namely those that are J-holomorphic. Using them it ispossible to build many interesting homology theories, such asquantum cohomology or symplectic field theory. Recently veryintriguing connections have come to light concerning the relationbetween the dynamical properties of the symplectomorphisms on aspace (in particular, how much symmetry the space has) and thestructure of its quantum homology ring. McDuff recentlydiscovered that if the space has a circle symmetry then it isuniruled, which implies that for every choice of J there is aJ-holomorphic sphere though every point in the space. One of herproposed projects will investigate such connections in moredepth. Another will investigate the structure of toricmanifolds, which are symplectic manifolds with maximal abeliansymmetric group. She also proposes a joint project with Schlenkthat will illuminate a very basic symplectic rigidity phenomenon.This attempts to understand exactly when a four dimensionalsymplectic ellipsoid can be squeezed inside a ball. This givesrise to some very interesting number-theoretic questions, andalso indicates a connection between the combinatorics ofJ-holomorphic curves in the blow up of the projective plane andthe numbers that appear as indices in embedded contact homology.A space can have one of several fundamental geometric structures,for example a way of measuring distance and angle (as inEuclidean geometry) or a way of measuring the area of twodimensional objects (as in symplectic geometry.) The structuresstudied in symplectic geometry are important because they notonly underlie the equations of classical energy-conservingsystems such as the planetary system, but also appear as a vitalcomponent of many of the modern theories in physics such asstring theory. This project aims to further our basicunderstanding of symplectic spaces. One line of inquiryconcentrates on questions about the influence of structures inthe large (such as cohomology) on the dynamical properties of thespace, investigating for example the number and nature of thepoints that are fixed under an arbitrary movement of the space.Another line of inquiry investigates what one might think of asthe crystalline nature of small pieces of a symplectic space;under pressure how do such small pieces fold so as to take upless space? This second line of inquiry leads to some veryinteresting questions in elementary number theory andcombinatorics, the first appearance in symplectic geometry of arelation between these fields. These questions can be explainedto high school students, and so will provide an excellent way toexplain to young people something of what research mathematiciansdo today and to stimulate their interest in the field.
AbstractAward:DMS-0905191首席研究员:Dusa McDuff由于辛结构允许人们测量二维表面的面积,因此辛流形的二维子流形是其整体结构的关键元素。 辅助几乎复结构J的选择决定了一类特别有趣的曲面,即J-全纯曲面。 利用它们可以建立许多有趣的同调理论,如量子上同调或辛场论。 最近,关于空间上辛同胚的动力学性质(特别是空间的对称性)与其量子同调环的结构之间的关系,人们发现了非常有趣的联系。 McDuff最近发现,如果空间具有圆对称性,那么它是无环的,这意味着对于J的每一个选择,都有一个J-全纯球面通过空间中的每一个点。她提出的一个项目将更深入地研究这种联系。 另一个是研究具有极大交换对称群的复曲面流形的结构。她还提出了一个与Schlenk的联合项目,该项目将阐明一个非常基本的辛刚性现象。这试图准确理解四维辛椭球何时可以被挤压在球内。 这引起了一些非常有趣的数论问题,也表明了射影平面爆破中J-全纯曲线的组合学与嵌入接触同调中作为指数出现的数字之间的联系。空间可以具有几种基本几何结构之一,例如测量距离和角度的方法(如欧几里得几何)或测量二维物体面积的方法(如辛几何)。 辛几何中研究的结构是重要的,因为它们不仅是经典能量守恒系统(如行星系统)方程的基础,而且也是许多现代物理学理论(如弦理论)的重要组成部分。 这个项目旨在进一步加深我们对辛空间的基本理解。 其中一条调查线集中在大范围内结构影响的问题上(如上同调)对空间动力学性质的研究,例如研究在空间任意运动下固定点的数量和性质。另一种研究方法是研究人们可能认为的辛空间小块的结晶性质;在压力下,这样的小块是如何折叠以占据无压力的空间的? 这第二条调查线导致了一些非常有趣的问题,在初等数论和组合学,第一次出现在辛几何的关系,这些领域之间。 这些问题可以解释给高中生,因此将提供一个很好的方式来解释给年轻人的一些研究数学家今天做什么,并激发他们在该领域的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dusa McDuff其他文献
Some Reminiscences of My Father, Wad
- DOI:
10.1162/biot.2008.3.3.287 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:1.900
- 作者:
Dusa McDuff - 通讯作者:
Dusa McDuff
Dusa McDuff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dusa McDuff', 18)}}的其他基金
Foundations of the theory of J-holomorphic curves
J-全纯曲线理论基础
- 批准号:
1308669 - 财政年份:2013
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
The Topology of Symplectomorphism Groups
辛同胚群的拓扑
- 批准号:
0604769 - 财政年份:2006
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Symplectic Topology and Hamiltonian Dynamics
辛拓扑和哈密顿动力学
- 批准号:
0305939 - 财政年份:2003
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
9401443 - 财政年份:1994
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
9103033 - 财政年份:1991
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
8803056 - 财政年份:1988
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
8504355 - 财政年份:1985
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Dynamics, Embeddings, and Continuous Symplectic Geometry
动力学、嵌入和连续辛几何
- 批准号:
2227372 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Dynamics, Embeddings, and Continuous Symplectic Geometry
动力学、嵌入和连续辛几何
- 批准号:
2105471 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
- 批准号:
1812481 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Symplectic Geometry-Theory and Applications to Dynamics (B08)
辛几何理论及其在动力学中的应用(B08)
- 批准号:
218623147 - 财政年份:2012
- 资助金额:
$ 28.5万 - 项目类别:
Collaborative Research Centres
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2007
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2006
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2005
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2004
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual
Homotopical dynamics with applications to symplectic topology and differential geometry
同伦动力学及其在辛拓扑和微分几何中的应用
- 批准号:
261277-2003 - 财政年份:2003
- 资助金额:
$ 28.5万 - 项目类别:
Discovery Grants Program - Individual