Foundations of the theory of J-holomorphic curves
J-全纯曲线理论基础
基本信息
- 批准号:1308669
- 负责人:
- 金额:$ 25.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to rework some basic foundational constructions in symplectic geometry. Symplectic invariants (usually counts of curves of various kinds) are defined using solutions to perturbed systems of equations, and the issues involved in finding coherent perturbations are not yet fully worked out. A main part of this proposal is to continue McDuff?s project with Wehrheim that reworks the traditional approach (via finite dimensional reduction) to this problem. So far, they have resolved the main topological issues, but questions concerning isotropy and how to deal with the lack of smoothness caused by gluing have yet to be worked out in detail, even in the simplest case of closed curves. Once this most basic problem has been dealt with, many important variants of the construction also need reworking, for example what happens when there is a circle symmetry. McDuff also proposes to study a variety of more geometric questions. For example, how does the existence of a very non generic holomorphic curve in a symplectic four manifold affect the other curves in the manifold? How "bendable" are symplectic structures: is there a circle action with isolated fixed pointswhose moment map defines a (singular) fibration over a circle?Symplectic geometry has grown into a very important tool for understanding the structure of manifolds. These are spaces which, like the space-time of physics, locally look like familiar Euclidean space but might have global twisting. As in the recent solution to the Poincare conjecture concerning three dimensional manifolds, it has turned out that instead of looking at plain vanilla manifolds, one should give them extra structure: a metric (which is a way of measuring distance) or perhaps a complex or symplectic structure. The latter two involve making two-dimensional measurements (symplectic structures measure area), and are related by a mysterious mirror symmetry that was first suggested by physicists and recently given various mathematical interpretations. In its eagerness to work with these exciting new ideas from physics, the mathematical community has been using various foundational tools without setting them up with sufficient rigor. This has become a serious problem. Mathematics develops via intuition and imagination, but, because results cannot be verified by experimentation, without careful and valid proofs one is left with mere speculation. This project is largely motivated by the desire to remedy this. It proposes a detailed reworking of basic constructions (from topology and analysis) that allow one to count objects in a consistent way. Once completed, symplectic geometers will be able to move ahead with a sure way to test the correctness of their arguments.
这个项目试图重写辛几何中的一些基本基础结构。辛不变量(通常是各种曲线的计数)是使用摄动方程组的解来定义的,而寻找相干摄动所涉及的问题还没有完全解决。这项提议的一个主要部分是继续麦克达夫?S与魏赫海姆的项目,对解决这个问题的传统方法进行重新设计(通过有限维降维)。到目前为止,它们已经解决了主要的拓扑问题,但关于各向同性以及如何处理粘合造成的光滑性的问题尚未详细解决,即使是在闭合曲线的最简单情况下也是如此。一旦解决了这个最基本的问题,许多重要的结构变体也需要重新设计,例如,当存在圆对称时会发生什么。麦克达夫还提议研究各种更多的几何问题。例如,四辛流形中一条非常非一般的全纯曲线的存在如何影响流形中的其他曲线?辛结构有多“可弯曲”:有没有一个具有孤立不动点的圆作用,它的矩映射定义了圆上的(奇异)纤维?辛几何已经成为理解流形结构的一个非常重要的工具。这些空间,就像物理学的时空一样,局部看起来像熟悉的欧几里得空间,但可能有全球扭曲。就像最近关于三维流形的庞加莱猜想的解决方案一样,事实证明,人们应该给它们额外的结构,而不是普通的普通流形:度量(这是一种测量距离的方式),或者可能是复杂或辛结构。后两者涉及进行二维测量(辛结构测量面积),并与一种神秘的镜像对称有关,该对称最先由物理学家提出,最近给出了各种数学解释。在热衷于使用这些来自物理学的令人兴奋的新想法的过程中,数学界一直在使用各种基础工具,但没有对它们进行足够严格的设置。这已经成为一个严重的问题。数学是通过直觉和想象力发展起来的,但是,由于结果不能通过实验来验证,没有仔细和有效的证据,人们只能停留在猜测上。这个项目在很大程度上是由补救这一问题的愿望推动的。它建议对基本结构(从拓扑和分析)进行详细的重新设计,使人们能够以一致的方式计算对象。一旦完成,辛几何学家将能够以一种确定的方式前进,以测试他们论点的正确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dusa McDuff其他文献
Some Reminiscences of My Father, Wad
- DOI:
10.1162/biot.2008.3.3.287 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:1.900
- 作者:
Dusa McDuff - 通讯作者:
Dusa McDuff
Dusa McDuff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dusa McDuff', 18)}}的其他基金
The Geometry and Dynamics of Symplectic Manifolds
辛流形的几何和动力学
- 批准号:
0905191 - 财政年份:2009
- 资助金额:
$ 25.05万 - 项目类别:
Standard Grant
The Topology of Symplectomorphism Groups
辛同胚群的拓扑
- 批准号:
0604769 - 财政年份:2006
- 资助金额:
$ 25.05万 - 项目类别:
Continuing Grant
Symplectic Topology and Hamiltonian Dynamics
辛拓扑和哈密顿动力学
- 批准号:
0305939 - 财政年份:2003
- 资助金额:
$ 25.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
9401443 - 财政年份:1994
- 资助金额:
$ 25.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
9103033 - 财政年份:1991
- 资助金额:
$ 25.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
8803056 - 财政年份:1988
- 资助金额:
$ 25.05万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Manifolds
数学科学:拓扑与流形
- 批准号:
8504355 - 财政年份:1985
- 资助金额:
$ 25.05万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Homotopy theory related to toric varieties and its related geomety
与环面簇相关的同伦理论及其相关几何
- 批准号:
22K03283 - 财政年份:2022
- 资助金额:
$ 25.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ohsawa-Takegoshi type extension theorem for holomorphic functions and pluripotential theory
全纯函数的 Ohsawa-Takegoshi 型可拓定理和多能理论
- 批准号:
19J00473 - 财政年份:2019
- 资助金额:
$ 25.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Loewner theory and holomorphic mappings in several variables
Loewner 理论和多变量的全纯映射
- 批准号:
RGPIN-2015-04290 - 财政年份:2019
- 资助金额:
$ 25.05万 - 项目类别:
Discovery Grants Program - Individual
Loewner theory and holomorphic mappings in several variables
Loewner 理论和多变量的全纯映射
- 批准号:
RGPIN-2015-04290 - 财政年份:2018
- 资助金额:
$ 25.05万 - 项目类别:
Discovery Grants Program - Individual
Loewner theory and holomorphic mappings in several variables
Loewner 理论和多变量的全纯映射
- 批准号:
RGPIN-2015-04290 - 财政年份:2017
- 资助金额:
$ 25.05万 - 项目类别:
Discovery Grants Program - Individual
Loewner theory and holomorphic mappings in several variables
Loewner 理论和多变量的全纯映射
- 批准号:
RGPIN-2015-04290 - 财政年份:2016
- 资助金额:
$ 25.05万 - 项目类别:
Discovery Grants Program - Individual
Geodesics, extension of holomorphic functions and the spectral theory of multioperators
测地线、全纯函数的扩展和多算子谱理论
- 批准号:
EP/N03242X/1 - 财政年份:2016
- 资助金额:
$ 25.05万 - 项目类别:
Research Grant
Loewner theory and holomorphic mappings in several variables
Loewner 理论和多变量的全纯映射
- 批准号:
RGPIN-2015-04290 - 财政年份:2015
- 资助金额:
$ 25.05万 - 项目类别:
Discovery Grants Program - Individual
Classes of operators on holomorphic function spaces with ties to geometry, measure theory and mathematical physics
与几何、测度论和数学物理相关的全纯函数空间上的算子类
- 批准号:
105467-2011 - 财政年份:2014
- 资助金额:
$ 25.05万 - 项目类别:
Discovery Grants Program - Individual
Applications of real singularity theory and the homotopy types of spaces of holomorphic maps
实奇点理论与全纯映射空间同伦型的应用
- 批准号:
26400083 - 财政年份:2014
- 资助金额:
$ 25.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)