Design and Analysis of Complex Experiments: Branching Factors and Functional Responses

复杂实验的设计和分析:分支因子和功能响应

基本信息

  • 批准号:
    0905753
  • 负责人:
  • 金额:
    $ 12.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Statistical design and analysis of experiments is an effective and commonly used tool in scientific discoveries. The rapid growth in technology and computing power has made available many complex experiments, such as those with branching factors and functional responses. It also poses many new challenges. The primary objective of this proposal is to develop a set of novel and efficient statistical methods to tackle the emerging challenges and thus accelerate discoveries in many disciplines that use experimental investigation. The research plan consists of two parts. The first part of the research focuses on design and analysis of experiments with branching and nested factors. In many complex experiments, some of the factors exist only within the level of another factor. Such factors are often called nested factors. A factor within which other factors are nested is called a branching factor. Design and analysis of experiments with branching and nested factors are crucial in many complex systems and have not received much attention in the literature. In the first part of this proposal, new classes of designs, theory, combinatorial and algorithmic construction strategies, and structured modeling are proposed that can take into account the branching and nested structure in a complex experiment and identify important factors effectively. The second part of the research focuses on the analysis of computer experiments with functional responses. Physical experiments can be expensive and time-consuming; thus, computer experiments have been widely used as economical alternatives. Many computer experiment responses are collected in a functional form. However, literature on modeling computer experiments with functional responses remains scarce as most of the existing modeling techniques focus on single outputs. Although there are some dimension reduction techniques for functional responses, they do not account for an important feature, the deterministic outputs, of computer experiments. To address this issue, a sequential technique is proposed, which provides an interpolating model. It also incorporates a novel iterative procedure and thus enjoys great computational efficiency.The new class of designs, design theory, combinatorial and algorithmic construction methods, and structured models proposed in this research appears to be the first systematic investigation of experiments with branching and nested factors. They can open new avenues for studying problems that energize both theoretical and applied research. The proposed sequential modeling technique for computer experiments with functional responses takes into account the special features in computer experiments and enjoys great computational efficiency. It is an innovative concept which can lead to new research in functional data analysis. Both methods are readily applicable to a variety of scientific fields, such as electronic packaging, biomechanical engineering design, wildfire control, and influenza modeling.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。实验的统计设计和分析是科学发现中有效和常用的工具。技术和计算能力的快速发展使许多复杂的实验成为可能,例如具有分支因子和功能响应的实验。它也带来了许多新的挑战。本提案的主要目标是开发一套新颖有效的统计方法来应对新出现的挑战,从而加速使用实验研究的许多学科的发现。研究计划由两部分组成。研究的第一部分着重于分支因子和嵌套因子实验的设计和分析。在许多复杂的实验中,有些因素只存在于另一个因素的水平之内。这些因素通常被称为嵌套因素。在其中嵌套其他因子的因子称为分支因子。具有分支和嵌套因子的实验设计和分析在许多复杂系统中是至关重要的,但在文献中没有得到太多关注。在本文的第一部分中,提出了新的设计、理论、组合和算法构建策略以及结构化建模,这些策略可以考虑复杂实验中的分支和嵌套结构,并有效地识别重要因素。研究的第二部分着重于功能响应的计算机实验分析。物理实验既昂贵又耗时;因此,计算机实验作为经济的替代方法被广泛使用。许多计算机实验结果以函数形式收集。然而,由于大多数现有的建模技术都集中在单一输出上,关于模拟功能响应的计算机实验的文献仍然很少。虽然有一些功能响应的降维技术,但它们没有考虑到计算机实验的一个重要特征,即确定性输出。为了解决这个问题,提出了一种时序技术,它提供了一个插值模型。该方法还采用了一种新颖的迭代方法,具有很高的计算效率。本研究中提出的新一类设计、设计理论、组合和算法构建方法以及结构化模型似乎是对分支和嵌套因素实验的第一次系统研究。它们可以为研究问题开辟新的途径,为理论和应用研究注入活力。本文提出的具有功能响应的计算机实验序列建模技术考虑了计算机实验的特殊性,具有较高的计算效率。这是一个创新的概念,可以导致新的研究功能数据分析。这两种方法都很容易适用于各种科学领域,如电子封装、生物力学工程设计、野火控制和流感建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Hung其他文献

An Initial Design-enhanced Deep Learning-based Optimization Framework to Parameterize Multicomponent ReaxFF Force Fields
用于参数化多分量 ReaxFF 力场的初始设计增强型基于深度学习的优化框架
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Sengul;Yao Song;Nadire Nayir;Yawei Gao;Ying Hung;Tirthankar Dasgupta;Adri C.T. van Duin
  • 通讯作者:
    Adri C.T. van Duin
Adaptive Probability-Based Latin Hypercube Designs
Informativeness of Weighted Conformal Prediction
加权共形预测的信息量
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mufang Ying;Wenge Guo;K. Khamaru;Ying Hung
  • 通讯作者:
    Ying Hung
PENALIZED BLIND KRIGING IN COMPUTER EXPERIMENTS
  • DOI:
    10.5705/ss.2009.226
  • 发表时间:
    2011-06
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ying Hung
  • 通讯作者:
    Ying Hung
Order selection in nonlinear time series models with application to the study of cell memory
非线性时间序列模型中的阶次选择及其在细胞记忆研究中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Hung
  • 通讯作者:
    Ying Hung

Ying Hung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Hung', 18)}}的其他基金

Collaborative Research: Efficient Bayesian Global Optimization with Applications to Deep Learning and Computer Experiments
协作研究:高效贝叶斯全局优化及其在深度学习和计算机实验中的应用
  • 批准号:
    2113475
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Modeling of Mechanosensing by Cell Surface Receptors
合作研究:细胞表面受体机械传感的统计模型
  • 批准号:
    1660477
  • 财政年份:
    2017
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Continuing Grant
CAREER: An Efficient Framework for Design and Modeling of Complex Computer Experiments
职业:复杂计算机实验设计和建模的有效框架
  • 批准号:
    1349415
  • 财政年份:
    2014
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: Validation, Calibration, and Prediction of Computer Models with Functional Output
协作研究:具有功能输出的计算机模型的验证、校准和预测
  • 批准号:
    0927572
  • 财政年份:
    2009
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Extended DFT+U method: application to analysis of complex doping effects, methodological developments and materials design.
扩展 DFT U 方法:应用于复杂掺杂效应分析、方法开发和材料设计。
  • 批准号:
    22K05019
  • 财政年份:
    2022
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive FEM for Analysis, Design, and Control of Complex Flows
用于复杂流动分析、设计和控制的自适应 FEM
  • 批准号:
    RGPIN-2019-07065
  • 财政年份:
    2022
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Computational approaches for analysis and design of complex multiphase flow systems
复杂多相流系统分析和设计的计算方法
  • 批准号:
    RGPIN-2020-04512
  • 财政年份:
    2022
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Design and analysis of experiments for complex social processes
职业:复杂社会过程实验的设计和分析
  • 批准号:
    2046880
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Continuing Grant
Adaptive FEM for Analysis, Design, and Control of Complex Flows
用于复杂流动分析、设计和控制的自适应 FEM
  • 批准号:
    RGPIN-2019-07065
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Computational approaches for analysis and design of complex multiphase flow systems
复杂多相流系统分析和设计的计算方法
  • 批准号:
    RGPIN-2020-04512
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Computational approaches for analysis and design of complex multiphase flow systems
复杂多相流系统分析和设计的计算方法
  • 批准号:
    RGPIN-2020-04512
  • 财政年份:
    2020
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive FEM for Analysis, Design, and Control of Complex Flows
用于复杂流动分析、设计和控制的自适应 FEM
  • 批准号:
    RGPIN-2019-07065
  • 财政年份:
    2020
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems
复杂非线性系统高效算法的设计与分析
  • 批准号:
    2012585
  • 财政年份:
    2020
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Continuing Grant
Development of Simplified Analysis tools and Design Methods for Complex and Innovative Reinforced Concrete Structures
复杂创新钢筋混凝土结构简化分析工具和设计方法的开发
  • 批准号:
    518446-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了