CAREER: An Efficient Framework for Design and Modeling of Complex Computer Experiments
职业:复杂计算机实验设计和建模的有效框架
基本信息
- 批准号:1349415
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary objective of this research is to develop an efficient framework for design and modeling of complex computer experiments, especially those with diverse and high-dimensional inputs and massive outputs. Computer experiments, i.e., experiments using simulation or numerical codes, have been widely used as alternatives to physical experiments, especially for studying complex phenomena. The investigator introduces new classes of designs that can efficiently accommodate large numbers of both quantitative and qualitative factors in computer experiments. The investigator also proposes a new adaptive design that is flexible and robust, yet takes into account uncertainties in the complex systems. Apart from experimental design, a novel sampling/modeling technique is proposed to reduce computational complexity and quantify model uncertainty in the analysis of computer experiments with massive data.The proposed approaches are readily applicable to a variety of scientific disciplines and will have immediate impact on accelerating discoveries in numerous fields involving complex experiments like biomechanical engineering, systems biology, and environmental science. In particular, the proposed modeling techniques can dramatically enhance the efficiency and prediction accuracy in the analysis of cell adhesion, which plays an important role in tumor metastasis in cancer research. Moreover, the proposed methods can benefit the analysis of massive data for climate change, response to natural disasters, and the spread of pandemic disease. Integrated into the research outlined in this proposal is an education plan that emphasizes interdisciplinary training for a broad body of students and increasing participation from underrepresented groups. Results of the proposed research will be integrated into the Research Experience for Undergraduates program offered by Rutgers. Female and undergraduate students from underrepresented groups will be recruited and actively involved in the PI's research through Rutgers's highly successful Research in Science and Engineering program. Software will be written, which allows graduate and undergraduate students to have hands-on experience to implement the new methods on real examples.
本研究的主要目标是开发一个有效的框架,设计和建模复杂的计算机实验,特别是那些具有多样性和高维输入和大量输出。计算机实验,即,使用模拟或数字代码的实验已被广泛用作物理实验的替代方案,特别是用于研究复杂现象。研究人员介绍了新的设计类别,可以有效地容纳大量的定量和定性因素在计算机实验。研究人员还提出了一种新的自适应设计,是灵活和强大的,但考虑到复杂系统中的不确定性。除了实验设计,一种新的采样/建模技术,提出了减少计算的复杂性和量化模型的不确定性,在计算机实验分析与海量数据,所提出的方法是很容易适用于各种科学学科,并将有直接的影响,加速发现在许多领域,涉及复杂的实验,如生物力学工程,系统生物学,环境科学。特别是,所提出的建模技术可以显着提高细胞粘附分析的效率和预测精度,这在肿瘤转移研究中起着重要作用。此外,所提出的方法可以有益于气候变化,应对自然灾害和流行病的传播的大量数据的分析。本提案中概述的研究纳入了一项教育计划,该计划强调对广大学生进行跨学科培训,并增加代表性不足群体的参与。拟议的研究结果将被纳入罗格斯大学提供的本科生研究经验计划。来自代表性不足群体的女性和本科生将被招募,并通过罗格斯大学非常成功的科学与工程研究计划积极参与PI的研究。软件将被编写,这使得研究生和本科生有实践经验,以实现真实的例子的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Hung其他文献
An Initial Design-enhanced Deep Learning-based Optimization Framework to Parameterize Multicomponent ReaxFF Force Fields
用于参数化多分量 ReaxFF 力场的初始设计增强型基于深度学习的优化框架
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Sengul;Yao Song;Nadire Nayir;Yawei Gao;Ying Hung;Tirthankar Dasgupta;Adri C.T. van Duin - 通讯作者:
Adri C.T. van Duin
Adaptive Probability-Based Latin Hypercube Designs
- DOI:
10.1198/jasa.2011.tm10337 - 发表时间:
2011-03 - 期刊:
- 影响因子:3.7
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Informativeness of Weighted Conformal Prediction
加权共形预测的信息量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mufang Ying;Wenge Guo;K. Khamaru;Ying Hung - 通讯作者:
Ying Hung
PENALIZED BLIND KRIGING IN COMPUTER EXPERIMENTS
- DOI:
10.5705/ss.2009.226 - 发表时间:
2011-06 - 期刊:
- 影响因子:1.4
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Order selection in nonlinear time series models with application to the study of cell memory
非线性时间序列模型中的阶次选择及其在细胞记忆研究中的应用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Ying Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Hung', 18)}}的其他基金
Collaborative Research: Efficient Bayesian Global Optimization with Applications to Deep Learning and Computer Experiments
协作研究:高效贝叶斯全局优化及其在深度学习和计算机实验中的应用
- 批准号:
2113475 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Modeling of Mechanosensing by Cell Surface Receptors
合作研究:细胞表面受体机械传感的统计模型
- 批准号:
1660477 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Design and Analysis of Complex Experiments: Branching Factors and Functional Responses
复杂实验的设计和分析:分支因子和功能响应
- 批准号:
0905753 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Validation, Calibration, and Prediction of Computer Models with Functional Output
协作研究:具有功能输出的计算机模型的验证、校准和预测
- 批准号:
0927572 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management
职业:用于数据高效资源管理的网络和学习协同设计框架
- 批准号:
2239458 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: An Efficient Computational Framework for Data Driven Feedback Control
职业:数据驱动反馈控制的高效计算框架
- 批准号:
2142672 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Toward Hierarchical Game Theory and Hybrid Learning Framework for Safe, Efficient Large-scale Multi-agent Systems
职业:面向安全、高效的大规模多智能体系统的分层博弈论和混合学习框架
- 批准号:
2144646 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Efficient Mobile Edge Oriented Deep Learning Framework
职业:高效的面向移动边缘的深度学习框架
- 批准号:
2145389 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards a Principled Framework for Resilient, Data Efficient and Scalable Reinforcement Learning for Control
职业:建立一个有弹性、数据高效且可扩展的强化学习控制原则框架
- 批准号:
2045783 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Flexible and Efficient Exploration of the Bayesian Framework for High Dimensional Modeling
职业:高维建模贝叶斯框架的灵活高效探索
- 批准号:
1943500 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Parallel and Efficient Computational Framework for Unified Volumetric Meshing in Large-Scale 3D/4D Anisotropy
职业生涯:大规模 3D/4D 各向异性中统一体积网格划分的并行高效计算框架
- 批准号:
1845962 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards an Intermittent Learning Framework for Smart and Efficient Cyber-Physical Autonomy
职业:走向智能高效的网络物理自治的间歇性学习框架
- 批准号:
1851588 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant