Collaborative Research: Efficient Bayesian Global Optimization with Applications to Deep Learning and Computer Experiments
协作研究:高效贝叶斯全局优化及其在深度学习和计算机实验中的应用
基本信息
- 批准号:2113475
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary objective of this research is to develop global optimization methods which will dramatically enhance the optimization efficiency in the studies of complex scientific problems. The research findings will significantly accelerate discoveries in numerous scientific disciplines involving artificial intelligence and numerical simulations such as mechanical engineering, energy, automated transportation, aerospace engineering, environmental science, and materials science. Integrated into the research is an education plan that emphasizes interdisciplinary training for a broad body of students and increasing participation from underrepresented groups. The PIs will recruit female students and undergraduate students from underrepresented groups and actively involve them in this research. Research findings will be disseminated at conferences. Furthermore, research findings will also be integrated into PIs’ courses to have optimization and data analysis training for graduate and undergraduate students. This research focuses on Bayesian global optimization which refers to active learning strategies developed by stochastic process priors for the optimization of expensive "black box" functions. Motivated by the challenges emerged from global optimization in deep learning and computer experiments, two innovative Bayesian active learning methods will be developed which are applicable to problems with conditionally dependent inputs and non-Gaussian stochastic outputs. The first method will address an important but unresolved issue arising from the optimization of stochastic outputs in classification problems. The novelty lies in an expected improvement criterion developed based on a generalized Gaussian process which leads to a tractable objective function with an intuitive interpretation. The asymptotic convergence properties will be developed rigorously under the continuum-armed-bandit settings. The second method is based on a new correlation function for a branching and nested structure, which occurs commonly in practice. Sufficient conditions on the validity of the new correlation functions is expected to be derived and a new class of optimal initial designs will be systematically constructed. The innovative idea of automatic-tuning in deep learning by a rigorous Bayesian global optimization will shed light on new methodologies for the optimization of "black box" functions and inspire new research ideas in machine learning, optimization, and spatial statistics. Beyond the applications to computer vision and optimal controls in robotics, the design, modeling, and optimization strategies can open new avenues for studying complex optimization problems with expensive unknown functions and energize both theoretical and applied research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究的主要目标是开发全局优化方法,这将大大提高优化效率在复杂的科学问题的研究。这些研究成果将大大加速涉及人工智能和数值模拟的众多科学学科的发现,如机械工程,能源,自动运输,航空航天工程,环境科学和材料科学。这项研究纳入了一项教育计划,该计划强调对广大学生进行跨学科培训,并增加代表性不足群体的参与。研究所将从代表性不足的群体中招募女学生和本科生,并积极让她们参与这项研究。研究结果将在会议上传播。此外,研究成果也将融入PI的课程,为研究生和本科生提供优化和数据分析培训。 本研究的重点是贝叶斯全局优化,这是指主动学习策略的随机过程先验优化昂贵的“黑箱”功能。受深度学习和计算机实验中全局优化所带来的挑战的启发,将开发两种创新的贝叶斯主动学习方法,适用于条件依赖输入和非高斯随机输出的问题。第一种方法将解决一个重要的,但未解决的问题所产生的随机输出的优化分类问题。新颖之处在于预期的改进标准的基础上开发的广义高斯过程,导致一个易于处理的目标函数与直观的解释。渐近收敛性质将严格发展下的连续武装土匪设置。第二种方法是基于一个新的相关函数的分支和嵌套结构,这在实践中经常发生。新的相关函数的有效性的充分条件预计将被导出,一类新的最优初始设计将被系统地构造。通过严格的贝叶斯全局优化在深度学习中进行自动调整的创新思想将为优化“黑箱”函数提供新的方法,并激发机器学习,优化和空间统计的新研究思路。除了在机器人技术中的计算机视觉和最优控制应用外,设计、建模和优化策略还可以为研究具有昂贵未知功能的复杂优化问题开辟新途径,并为理论和应用研究注入活力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响评审标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Hung其他文献
An Initial Design-enhanced Deep Learning-based Optimization Framework to Parameterize Multicomponent ReaxFF Force Fields
用于参数化多分量 ReaxFF 力场的初始设计增强型基于深度学习的优化框架
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Sengul;Yao Song;Nadire Nayir;Yawei Gao;Ying Hung;Tirthankar Dasgupta;Adri C.T. van Duin - 通讯作者:
Adri C.T. van Duin
Adaptive Probability-Based Latin Hypercube Designs
- DOI:
10.1198/jasa.2011.tm10337 - 发表时间:
2011-03 - 期刊:
- 影响因子:3.7
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Informativeness of Weighted Conformal Prediction
加权共形预测的信息量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mufang Ying;Wenge Guo;K. Khamaru;Ying Hung - 通讯作者:
Ying Hung
PENALIZED BLIND KRIGING IN COMPUTER EXPERIMENTS
- DOI:
10.5705/ss.2009.226 - 发表时间:
2011-06 - 期刊:
- 影响因子:1.4
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Order selection in nonlinear time series models with application to the study of cell memory
非线性时间序列模型中的阶次选择及其在细胞记忆研究中的应用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Ying Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Hung', 18)}}的其他基金
Collaborative Research: Statistical Modeling of Mechanosensing by Cell Surface Receptors
合作研究:细胞表面受体机械传感的统计模型
- 批准号:
1660477 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: An Efficient Framework for Design and Modeling of Complex Computer Experiments
职业:复杂计算机实验设计和建模的有效框架
- 批准号:
1349415 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Design and Analysis of Complex Experiments: Branching Factors and Functional Responses
复杂实验的设计和分析:分支因子和功能响应
- 批准号:
0905753 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Validation, Calibration, and Prediction of Computer Models with Functional Output
协作研究:具有功能输出的计算机模型的验证、校准和预测
- 批准号:
0927572 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346651 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant