Collaborative Research: Statistical Modeling of Mechanosensing by Cell Surface Receptors
合作研究:细胞表面受体机械传感的统计模型
基本信息
- 批准号:1660477
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a collaborative team between Georgia Tech and Rutgers, which consists of two statisticians and one biomedical engineer. It can serve as a role model on how rigorous statistical methods are used to tackle important problems in biology. The proposed research will provide a better understanding of a complex biological signaling process called cell adhesion, which can pave the way to future clinical interventions. The proposed statistical approaches are readily applicable to a variety of scientific disciplines and will have immediate impact on accelerating discoveries in numerous fields involving complex experiments. This research will facilitate a new mode of intellectual interaction between statistics and cell biology. Some outreach programs are proposed for educating the next generation of mathematical biologists and biometricians. The team is committed to creating a diverse environment in their laboratories in terms of race, gender and national origin. The research will also provide an excellent opportunity to recruit students from underrepresented groups to participate in projects at the interface between biology and statistics. Cells use their surface receptors to sense the environment by engaging ligands on neighboring cells or in the extracellular matrix. This research focuses on understanding how receptor-ligand engagement induces cellular response, which is critical to unraveling many disease pathologies and can provide the groundwork for clinical intervention. With a few exceptions, the mechanisms behind signaling initiation remain elusive for most receptors. The innovation of this project is in combining the single-molecule experiments with statistical modeling to extract new readouts required for understanding the complex signaling processes. New frameworks based on novel modifications to Gaussian process (GP) models and new regime-switching models are proposed to quantify the memory effect in receptor/ligand binding. To rigorously quantify effects of different putative triggering parameters on cell signaling, a new varying-coefficient Cox model is proposed. The proposed statistical models will be validated with experimental data from the lab and modified if warranted. The proposed studies are significant because the sophisticated statistical modeling will greatly empower the understanding of the impact of mechanical forces on two biologically important and clinically relevant receptors in the human body: the platelet glycoprotein Ib and the T cell receptor. From the statistical point of view, the proposed GP model for binary data provides an analogy to the standard GP models with interpolation property, which can potentially lead to further advances in spatial statistics. The new regime-switching models borrow strength across different time series, which can have significant impacts on longitudinal study. The new Cox model allows the effects of covariates to vary over time and incorporates the between subject variation. It can open up new avenues for studying problems in various fields involving survival or failure analysis, and energize both theoretical and applied research.
这是格鲁吉亚理工学院和罗格斯大学之间的一个合作团队,由两名统计学家和一名生物医学工程师组成。它可以作为一个榜样,说明如何严格的统计方法来解决生物学中的重要问题。这项研究将更好地了解称为细胞粘附的复杂生物信号传导过程,这可以为未来的临床干预铺平道路。所提出的统计方法很容易适用于各种科学学科,并将对加速涉及复杂实验的许多领域的发现产生直接影响。这项研究将促进统计学和细胞生物学之间的智能互动的新模式。一些推广计划提出了教育下一代的数学生物学家和生物统计学家。该团队致力于在他们的实验室中创造一个种族,性别和民族血统方面的多元化环境。这项研究还将提供一个极好的机会,从代表性不足的群体中招募学生参加生物学和统计学之间的接口项目。细胞使用其表面受体通过接合邻近细胞或细胞外基质中的配体来感知环境。这项研究的重点是了解受体-配体结合如何诱导细胞反应,这对揭示许多疾病病理至关重要,并可以为临床干预提供基础。除了少数例外,大多数受体的信号启动机制仍然难以捉摸。该项目的创新之处在于将单分子实验与统计建模相结合,以提取理解复杂信号传导过程所需的新读数。新的框架的基础上提出了新的修改高斯过程(GP)模型和新的政权切换模型来量化的记忆效应受体/配体结合。为了严格量化不同假定触发参数对细胞信号传导的影响,提出了一种新的变系数考克斯模型。将使用实验室的实验数据对拟定的统计模型进行验证,并在必要时进行修改。所提出的研究是重要的,因为复杂的统计建模将大大增强对机械力对人体中两种生物学重要和临床相关受体的影响的理解:血小板糖蛋白Ib和T细胞受体。从统计的角度来看,所提出的二进制数据GP模型提供了与具有插值属性的标准GP模型的类比,这可能会导致空间统计学的进一步发展。新的机制转换模型在不同的时间序列上借用了力量,这可能对纵向研究产生重大影响。新的考克斯模型允许协变量的影响随时间变化,并纳入受试者之间的变异。它可以为研究涉及生存或失败分析的各个领域的问题开辟新的途径,并激励理论和应用研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comment on “Probabilistic Integration: A Role in Statistical Computation?”
对“概率积分:统计计算中的作用?”的评论
- DOI:10.1214/18-sts677
- 发表时间:2019
- 期刊:
- 影响因子:5.7
- 作者:Stein, Michael L.;Hung, Ying
- 通讯作者:Hung, Ying
INDEEDopt: a deep learning-based ReaxFF parameterization framework
- DOI:10.1038/s41524-021-00534-4
- 发表时间:2021-05
- 期刊:
- 影响因子:9.7
- 作者:M. Sengul;Yao Song;Nadire Nayir;Yawei Gao;Ying Hung;Tirthankar Dasgupta;A. V. van Duin
- 通讯作者:M. Sengul;Yao Song;Nadire Nayir;Yawei Gao;Ying Hung;Tirthankar Dasgupta;A. V. van Duin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Hung其他文献
An Initial Design-enhanced Deep Learning-based Optimization Framework to Parameterize Multicomponent ReaxFF Force Fields
用于参数化多分量 ReaxFF 力场的初始设计增强型基于深度学习的优化框架
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Sengul;Yao Song;Nadire Nayir;Yawei Gao;Ying Hung;Tirthankar Dasgupta;Adri C.T. van Duin - 通讯作者:
Adri C.T. van Duin
Adaptive Probability-Based Latin Hypercube Designs
- DOI:
10.1198/jasa.2011.tm10337 - 发表时间:
2011-03 - 期刊:
- 影响因子:3.7
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Informativeness of Weighted Conformal Prediction
加权共形预测的信息量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mufang Ying;Wenge Guo;K. Khamaru;Ying Hung - 通讯作者:
Ying Hung
PENALIZED BLIND KRIGING IN COMPUTER EXPERIMENTS
- DOI:
10.5705/ss.2009.226 - 发表时间:
2011-06 - 期刊:
- 影响因子:1.4
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Order selection in nonlinear time series models with application to the study of cell memory
非线性时间序列模型中的阶次选择及其在细胞记忆研究中的应用
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ying Hung - 通讯作者:
Ying Hung
Ying Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Hung', 18)}}的其他基金
Collaborative Research: Efficient Bayesian Global Optimization with Applications to Deep Learning and Computer Experiments
协作研究:高效贝叶斯全局优化及其在深度学习和计算机实验中的应用
- 批准号:
2113475 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
CAREER: An Efficient Framework for Design and Modeling of Complex Computer Experiments
职业:复杂计算机实验设计和建模的有效框架
- 批准号:
1349415 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Design and Analysis of Complex Experiments: Branching Factors and Functional Responses
复杂实验的设计和分析:分支因子和功能响应
- 批准号:
0905753 - 财政年份:2009
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Validation, Calibration, and Prediction of Computer Models with Functional Output
协作研究:具有功能输出的计算机模型的验证、校准和预测
- 批准号:
0927572 - 财政年份:2009
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant