Analysis, Computation, and Application of Completions of Constrained Dynamical Systems

约束动力系统完备性的分析、计算与应用

基本信息

  • 批准号:
    0907832
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Abstract: A differential algebraic equation (DAE) is an implicit system of differential equations in state and control variables. An integer quantity called the index is one measure of how different a DAE is from being an explicit ordinary differential equation (ODE). Many problems are most naturally initially modeled as a DAE particularly those that are analyzed and simulated using computer generated mathematical models. DAEs occur in optimization when the original problem is a DAE or because of the activation of constraints. Because of DAEs importance, a variety of numerical techniques have been developed in recent years to simulate and analyze DAEs although most of these methods only work on specific classes of problems with special structure and low index. Unfortunately many widely used software packages cannot accept DAE models, or if they can accept them, the models must be index one or have special structure. One way to address both the problem of general DAE integrators and wider use of DAE models in current software, is to embed the DAE into an ordinary differential equation (ODE) called a completion of the DAE. The idea of embedding the DAE solutions into an ODE has been around for some time. However, traditional approaches either left the new additional dynamics under determined or again only worked for special classes of systems. A more general and automated type of embedding, such as that to be investigated in the proposed project, would greatly extend the applicability of many current software packages. In this project the investigators and his colleagues and students will work on the analysis, computation, and application of completions of general DAEs. Analysis backed algorithms will be constructed to generate completions with desired extra dynamics. The proposed research represents a major extension and modification of this idea to general nonlinear DAEs and the development of new results on controlling the nature of these additional dynamics. The obtained results will be of considerable independent interest but the proposal will focus on first applying the new results to simulation and control. The proposed research will result in improved algorithms and new theoretical understanding of numerical methods for differential algebraic equations and their use in control and simulation.Increasingly in many problems in science and industry the process or machine is described in terms of what are called differential equations. This mathematical model is then used to simulate the process on a computer and to predict what the real system would do, to design more efficient processes, and to improve performance. However, the problems of interest in science and engineering today are becoming increasingly complex so that today mathematical models are often formed by combining together several different mathematical models. A mathematical model of a biotechnological system, for example, might include equations describing fluid flow, chemical reactions, and mechanics. These composite mathematical models are often very complex and are sometimes not in a form that is ready to be solved with current computer software. It can then take considerable human effort, and sometimes a loss of accuracy, to convert these complex mathematical models to a form that can be readily used. The conversion process not only takes time but can lead to errors. The investigators of this project will develop theory backed mathematical procedures and algorithms that will facilitate and automate the conversion of the original complex mathematical models to models that can be used with existing software and algorithms. This will reduce the time between model development and being able to use the model, improve the accuracy of the models, reduce the introduction of errors, and thereby speed up the design of industrial processes, and the analysis of many physical systems. While the differential equations studied in this project occur widely, in the testing of the algorithms the investigators will initially draw primarily on problems from the mechanical engineering and aerospace communities and the development of more efficient and reliable manufacturing processes.
翻译后摘要:微分代数方程(DAE)是一个隐式系统的状态和控制变量的微分方程。称为指数的整数量是DAE与显式常微分方程(ODE)之间差异的一种度量。许多问题最初最自然地建模为DAE,特别是那些使用计算机生成的数学模型进行分析和模拟的问题。当原始问题是DAE或由于激活了约束时,DAE会在优化中出现。由于DAE的重要性,近年来已经开发了各种数值技术来模拟和分析DAE,尽管这些方法大多数只适用于具有特殊结构和低指标的特定类别的问题。不幸的是,许多广泛使用的软件包不能接受DAE模型,或者如果它们可以接受DAE模型,则模型必须是索引1或具有特殊结构。解决通用DAE积分器问题和当前软件中DAE模型更广泛使用问题的一种方法是将DAE嵌入到常微分方程(ODE)中,称为DAE的完备化。将DAE解决方案嵌入到ODE中的想法已经存在了一段时间。然而,传统的方法要么留下了新的额外的动态下确定或再次只适用于特殊类别的系统。一种更普遍和自动化的嵌入方式,如拟议项目中将研究的嵌入方式,将大大扩展目前许多软件包的适用性。在该项目中,研究人员及其同事和学生将致力于分析、计算和应用一般DAE的完成。 分析支持的算法将被构造为生成具有所需额外动态的完成。拟议的研究代表了一个重大的扩展和修改这一想法,一般的非线性DAE和控制这些额外的动态性质的新成果的发展。所获得的结果将是相当独立的利益,但建议将集中在第一次应用新的结果模拟和控制。拟议的研究将导致改进的算法和新的理论理解的数值方法的微分代数方程及其使用的控制和simulation.Increasingly在许多问题在科学和工业的过程或机器被描述在什么是所谓的微分方程。 然后,这个数学模型被用来在计算机上模拟该过程,并预测真实的系统将做什么,以设计更有效的过程,并提高性能。 然而,今天在科学和工程中感兴趣的问题变得越来越复杂,使得今天的数学模型通常通过将几个不同的数学模型组合在一起来形成。 例如,生物技术系统的数学模型可能包括描述流体流动、化学反应和力学的方程。 这些复合数学模型通常非常复杂,并且有时不是以可用当前计算机软件解决的形式。 然后可能需要相当大的人力,有时甚至会损失准确性,才能将这些复杂的数学模型转换为易于使用的形式。 转换过程不仅需要时间,而且可能导致错误。 该项目的研究人员将开发理论支持的数学程序和算法,这些程序和算法将促进和自动化原始复杂数学模型到可与现有软件和算法一起使用的模型的转换。 这将减少模型开发和能够使用模型之间的时间,提高模型的准确性,减少错误的引入,从而加快工业过程的设计和许多物理系统的分析。 虽然本项目中研究的微分方程广泛存在,但在算法测试中,研究人员最初将主要利用机械工程和航空航天界的问题以及更有效和可靠的制造工艺的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Campbell其他文献

The Myanmar radical tradition: revolution, reaction, and the changing imperial world order
缅甸的激进传统:革命、反动和不断变化的帝国世界秩序
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    G. Aung;Stephen Campbell
  • 通讯作者:
    Stephen Campbell
Dialectics over positivism for an intersectional Marxism
辩证法与实证主义的交叉马克思主义
  • DOI:
    10.1007/s10624-021-09625-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Stephen Campbell
  • 通讯作者:
    Stephen Campbell
Multistakeholder perspectives on ensuring quality in professional community pharmacy services: insights from nominal group discussions in England
多方利益相关者对确保专业社区药房服务质量的观点:来自英格兰名义小组讨论的见解
Time to Review Authorisation and Funding for New Cancer Medicines in Europe? Inferences from the Case of Olaratumab
  • DOI:
    10.1007/s40258-019-00527-x
  • 发表时间:
    2019-11-07
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Caridad Pontes;Corinne Zara;Josep Torrent-Farnell;Merce Obach;Cristina Nadal;Patricia Vella-Bonanno;Michael Ermisch;Steven Simoens;Renata Curi Hauegen;Jolanta Gulbinovic;Angela Timoney;Antony P. Martin;Tanja Mueller;Anna Nachtnebel;Stephen Campbell;Gisbert Selke;Tomasz Bochenek;Celia C. Rothe;Ileana Mardare;Marion Bennie;Jurij Fürst;Rickard E. Malmstrom;Brian Godman
  • 通讯作者:
    Brian Godman
Revisiting the Wages of Burman-Ness: Contradictions of Privilege in Myanmar
重新审视缅甸人的工资:缅甸的特权矛盾
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Stephen Campbell;Elliott Prasse
  • 通讯作者:
    Elliott Prasse

Stephen Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Campbell', 18)}}的其他基金

Direct Transcription Solution of Optimal Control Problems with Delays
时滞最优控制问题的直接转录解
  • 批准号:
    1209251
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of a Direct Write Electron Beam Lithography System for Exploring Mesoscale Science, Materials, and Devices
MRI-R2:获取直写电子束光刻系统,用于探索介观科学、材料和设备
  • 批准号:
    0959622
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Active Approaches to Identification and Failure Detection
主动识别和故障检测方法
  • 批准号:
    0620986
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Optimization and Simulation of Constrained Dynamical Systems
约束动力系统的优化与仿真
  • 批准号:
    0404842
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Single Nanoparticle Devices, A New Technique for Bottom-Up Manufacturing
NIRT:单纳米粒子设备,自下而上制造的新技术
  • 批准号:
    0304211
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Simulation, Optimization, and Analysis of High Dimensional Higher Index DAEs
高维高指数 DAE 的仿真、优化和分析
  • 批准号:
    0101802
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multi-model DAE Based Observer and Filter Design
基于多模型 DAE 的观测器和滤波器设计
  • 批准号:
    0114095
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
The Numerical Analysis and Application of High Dimensional Higher Index DAEs
高维高指数DAE的数值分析及应用
  • 批准号:
    9802259
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research (INRIA): Analysis, Implementation, and Application of Differential Algebraic Equations Based Observer and Filter Design
美法合作研究(INRIA):基于观测器和滤波器设计的微分代数方程的分析、实现和应用
  • 批准号:
    9605114
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Implicitly Modeled Control Systems
隐式建模控制系统
  • 批准号:
    9500589
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
  • 批准号:
    81903416
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Application-Aware Trustworthy Quantum Routing Framework with In-Network Computation
具有网内计算功能的应用感知可信量子路由框架
  • 批准号:
    23K28070
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Application-Aware Trustworthy Quantum Routing Framework with In-Network Computation
具有网内计算功能的应用感知可信量子路由框架
  • 批准号:
    23H03380
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Morphological Computation for Resilient Dynamic Locomotion of Compliant Legged Robots with Application to Precision Agriculture
职业:顺应腿式机器人弹性动态运动的形态计算及其在精准农业中的应用
  • 批准号:
    2046270
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Research on Spin Wave interference device for Quantum computation application
量子计算应用的自旋波干涉装置研究
  • 批准号:
    21J12725
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
  • 批准号:
    2012291
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of a method to form hollow silicon spheres, with application to photovoltaic cells: experiment and computation.
开发一种形成空心硅球的方法,并将其应用于光伏电池:实验和计算。
  • 批准号:
    20K04293
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on efficient secret sharing method that can generate countably infinite number of shares and its application to secure Computation
可生成可数无限个共享的高效秘密共享方法及其在安全计算中的应用研究
  • 批准号:
    20K11819
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of Robust Motion Planning Platform of Robots with Symbolic-Numeric Computation
符号数值计算机器人鲁棒运动规划平台的开发与应用
  • 批准号:
    20K11845
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Proposal and application of a useful bifurcation point detection method for various systems using evolutionary computation optimization methods
使用进化计算优化方法对各种系统有用的分叉点检测方法的提出和应用
  • 批准号:
    19K12138
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了