Optimization and Simulation of Constrained Dynamical Systems

约束动力系统的优化与仿真

基本信息

  • 批准号:
    0404842
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

Stephen L. Campbell will perform research on optimization, numerical methods for constrained differential equations, and constrained optimal control. This research will result in improved algorithms and new theoretical understanding of numerical methods for differential algebraic equations (DAEs) and the solution of inequality constrained optimal control problems by direct transcription approaches. More specifically, a DAE is an implicit differential equation. An integer quantity called the index is one measure of how different a DAE is from being an explicit ordinary differential equation. Many problems are most naturally initially modeled as a DAE particularly those that are analyzed and simulated using computer generated mathematical models. DAEs occur in optimization when the original problem is a DAE, because of the activation of constraints, and when partial differential equations are numerically solved using the method of lines. Because of the importance of DAEs in applications, a variety of numerical techniques have been developed in recent years to simulate and analyze DAEs although most of these methods only work on specific classes of problems with special structure and low index. The development of more general DAE integrators is one focus of this proposal. Direct transcription methods are a popular approach for the solution of optimal control problems. Recently it has been shown that the usual theory of DAE integrators needs to be substantially modified when DAEs occur during the numerical solution by direct transcription methods of inequality constrained optimal control problems. A second primary focus of this proposal is the numerical solution of inequality constrained optimal control problems using direct transcription methods. Throughout industry there is a need for the development of more efficient processes and systems. This is essential for improved performance, conserving of resources, and industrial and military competitiveness. This increased performance requires working with complex mathematical models of the systems in question. In many areas it is becoming necessary to utilize larger, more complex, and more complete models of the physical process or system. Two important parts of systems design are simulation and optimization. In applications there are many constraints. These constraints range from mission constraints (such as flying within certain flight corridors or intercepting specific targets) to physical constraints (such as contact between a robotic arm and a tool) to financial or cost constraints. These constraints pose both theoretical and computational challenges which increase with the model's complexity. This project is to develop both mathematical theory and numerical algorithms for the numerical simulation and optimal control of complex systems with constraints. The proposer has ongoing collaborations with developers of software used in a number of industries including the aerospace industry. The results of this research will both be incorporated into production computer codes as part of collaborations of the Principal Investigator and also shared with others developing numerical software. These algorithms and software will have very wide applicability. The current collaborations involve the aerospace industry including space and aircraft mission planning, robotic manufacturing, and optimization of chemical processes. In addition to the significant research to be accomplished, graduate students will play a fundamental role in this research. The training of the next generation of researchers in this area is another important contribution of this project. As with prior students of the Principle Investigator, the students trained on this project will move on to work in Industry, National Laboratories and Research Centers, the Armed Forces, and Academia.
Stephen L.坎贝尔将进行优化,数值方法的约束微分方程和约束最优控制的研究。 这项研究将导致改进的算法和新的理论理解的数值方法的微分代数方程(DAE)和不等式约束的最优控制问题的直接转录方法的解决方案。 更具体地,DAE是隐式微分方程。 称为指数的整数量是DAE与显式常微分方程的区别的一种度量。 许多问题最初最自然地建模为DAE,特别是那些使用计算机生成的数学模型进行分析和模拟的问题。 当原始问题是DAE时,由于约束的激活,以及当使用线方法数值求解偏微分方程时,DAE发生在优化中。 由于微分代数方程在实际应用中的重要性,近年来出现了多种数值方法来模拟和分析微分代数方程,尽管这些方法大多只适用于具有特殊结构和低指标的特定问题。 开发更通用的DAE集成器是本建议书的重点之一。 直接转录方法是一种流行的方法来解决最优控制问题。最近,它已被证明,通常的理论DAE积分器需要大大修改时,DAE发生在数值解不等式约束的最优控制问题的直接转录方法。 这个建议的第二个主要重点是不等式约束的最优控制问题的数值解使用直接转录方法。 在整个工业中,需要开发更有效的工艺和系统。 这对于提高性能、节约资源以及工业和军事竞争力至关重要。 这种提高的性能需要使用所讨论的系统的复杂数学模型。 在许多领域,利用物理过程或系统的更大、更复杂和更完整的模型变得越来越必要。 系统设计的两个重要部分是仿真和优化。 在应用中有许多限制。 这些限制从使命限制(例如在某些飞行走廊内飞行或拦截特定目标)到物理限制(例如机械臂与工具之间的接触)到财务或成本限制。 这些限制带来了理论和计算上的挑战,随着模型的复杂性而增加。 本项目旨在为具有约束的复杂系统的数值模拟和最优控制发展数学理论和数值算法。 提议者与包括航空航天工业在内的许多行业中使用的软件开发人员正在进行合作。 这项研究的结果将作为主要研究者合作的一部分纳入生产计算机代码,并与其他开发数值软件的人分享。 这些算法和软件将具有非常广泛的适用性。 目前的合作涉及航空航天工业,包括空间和飞机使命规划,机器人制造和化学过程的优化。 除了要完成的重要研究,研究生将在这项研究中发挥重要作用。 该项目的另一个重要贡献是培训这一领域的下一代研究人员。 与主要研究者的前学生一样,在这个项目上接受培训的学生将继续在工业,国家实验室和研究中心,武装部队和学术界工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Campbell其他文献

The Myanmar radical tradition: revolution, reaction, and the changing imperial world order
缅甸的激进传统:革命、反动和不断变化的帝国世界秩序
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    G. Aung;Stephen Campbell
  • 通讯作者:
    Stephen Campbell
Dialectics over positivism for an intersectional Marxism
辩证法与实证主义的交叉马克思主义
  • DOI:
    10.1007/s10624-021-09625-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Stephen Campbell
  • 通讯作者:
    Stephen Campbell
Multistakeholder perspectives on ensuring quality in professional community pharmacy services: insights from nominal group discussions in England
多方利益相关者对确保专业社区药房服务质量的观点:来自英格兰名义小组讨论的见解
Time to Review Authorisation and Funding for New Cancer Medicines in Europe? Inferences from the Case of Olaratumab
  • DOI:
    10.1007/s40258-019-00527-x
  • 发表时间:
    2019-11-07
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Caridad Pontes;Corinne Zara;Josep Torrent-Farnell;Merce Obach;Cristina Nadal;Patricia Vella-Bonanno;Michael Ermisch;Steven Simoens;Renata Curi Hauegen;Jolanta Gulbinovic;Angela Timoney;Antony P. Martin;Tanja Mueller;Anna Nachtnebel;Stephen Campbell;Gisbert Selke;Tomasz Bochenek;Celia C. Rothe;Ileana Mardare;Marion Bennie;Jurij Fürst;Rickard E. Malmstrom;Brian Godman
  • 通讯作者:
    Brian Godman
Revisiting the Wages of Burman-Ness: Contradictions of Privilege in Myanmar
重新审视缅甸人的工资:缅甸的特权矛盾
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Stephen Campbell;Elliott Prasse
  • 通讯作者:
    Elliott Prasse

Stephen Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Campbell', 18)}}的其他基金

Direct Transcription Solution of Optimal Control Problems with Delays
时滞最优控制问题的直接转录解
  • 批准号:
    1209251
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of a Direct Write Electron Beam Lithography System for Exploring Mesoscale Science, Materials, and Devices
MRI-R2:获取直写电子束光刻系统,用于探索介观科学、材料和设备
  • 批准号:
    0959622
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Analysis, Computation, and Application of Completions of Constrained Dynamical Systems
约束动力系统完备性的分析、计算与应用
  • 批准号:
    0907832
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Active Approaches to Identification and Failure Detection
主动识别和故障检测方法
  • 批准号:
    0620986
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Single Nanoparticle Devices, A New Technique for Bottom-Up Manufacturing
NIRT:单纳米粒子设备,自下而上制造的新技术
  • 批准号:
    0304211
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Simulation, Optimization, and Analysis of High Dimensional Higher Index DAEs
高维高指数 DAE 的仿真、优化和分析
  • 批准号:
    0101802
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Multi-model DAE Based Observer and Filter Design
基于多模型 DAE 的观测器和滤波器设计
  • 批准号:
    0114095
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
The Numerical Analysis and Application of High Dimensional Higher Index DAEs
高维高指数DAE的数值分析及应用
  • 批准号:
    9802259
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research (INRIA): Analysis, Implementation, and Application of Differential Algebraic Equations Based Observer and Filter Design
美法合作研究(INRIA):基于观测器和滤波器设计的微分代数方程的分析、实现和应用
  • 批准号:
    9605114
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Implicitly Modeled Control Systems
隐式建模控制系统
  • 批准号:
    9500589
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Molecules for Quantum simulation
量子模拟分子
  • 批准号:
    MR/X033430/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
  • 批准号:
    2422573
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
  • 批准号:
    2416160
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
  • 批准号:
    2401876
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Travel: Support for U.S. Students to Receive Training on Research Cyberinfrastructure at the 2024 Annual Modeling and Simulation Conference (ANNSIM)
旅行:支持美国学生在 2024 年年度建模与仿真会议 (ANNSIM) 上接受研究网络基础设施培训
  • 批准号:
    2425778
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了