Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
基本信息
- 批准号:0909314
- 负责人:
- 金额:$ 17.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One aspect of Friedlander's proposed research is to advance the understanding of how finite groups and their generalizations act on vector spaces. The elementary example of Z/p x Z/p is one of the first examples encountered by beginning students of abstract algebra, yet its representation theory is ``wild" so that no listing of all finite dimensional representations is possible. Friedlander has introduced constructive techniques which apply to this and other specific examples yet extend to very general situations. Friedlander proposes to continue his study of representations of arbitrary finite group schemes using insights and techniques from algebraic geometry as well as more traditional techniques of algebra. One goal is to contribute to the understanding of specific examples; a second goal is to sketch a general theory which incorporates these examples; and a third goal is to utilize certain special actions to study the algebraic K-theory of certain singular projective varieties associated to finite group schemes. A second aspect of Friedlander's proposed research is the investigtion of algebraic cycles on algebraic varieties. This is one of the most fundamental and challenging topics of algebraic geometry, much studied in the past hundred years. Friedlander's focus will be on algebraic equivalence classes of cycles, influenced by insights from the better understood analogue in algebraic topology. Applications are envisioned to algebraic K-theory as well as algebraic geometry. How can finite groups of symmetries act on vector spaces over finite fields or over even more general fields? How does the consideration of more general algebraic objects (finite group schemes) reflect on the original problem, especially in basic, familiar examples? How does the geometry, at first unrecognized, constrain the possibilities and lead to concrete examples? Can the explicit nature of these examples give structures in abstract contexts? These are some of the questions Friedlander proposes to investigate with several collaborators. In addition, he proposes to study solution sets of polynomial equations (algebraic geometry) using techniques developed in algebraic topology (theory of shapes). Friedlander plans to encourage younger mathematicians (including his past, present, and future students) in his quest. He also plans to continue his active roles in publishing mathematics, organizing mathematical events, and serving the national mathematical community.
弗里德兰德提出的研究的一个方面是促进对有限群及其推广如何作用于向量空间的理解。Z/p x Z/p的基本例子是初学抽象代数的学生最先遇到的例子之一,但它的表示理论是“疯狂的”,因此不可能列出所有有限维表示。弗里德兰德介绍了建设性的技巧,适用于这个和其他具体的例子,但扩展到非常普遍的情况。Friedlander建议使用代数几何的见解和技术以及更传统的代数技术继续研究任意有限群方案的表示。一个目标是促进对具体例子的理解;第二个目标是勾勒出一个包含这些例子的一般理论;第三个目标是利用某些特殊作用来研究有限群方案下某些奇异射影变的代数k理论。弗里德兰德提出的研究的第二个方面是对代数变量上的代数循环的研究。这是代数几何中最基本和最具挑战性的课题之一,在过去的一百年里,人们对它进行了大量的研究。Friedlander的重点将放在环的代数等价类上,受到代数拓扑中更好理解的模拟的影响。应用设想到代数k理论以及代数几何。有限对称群如何作用于有限域或更一般域上的向量空间?如何考虑更一般的代数对象(有限群方案)反映原来的问题,特别是在基本的,熟悉的例子?几何图形是如何在一开始被忽视的情况下限制可能性并导致具体的例子?这些例子的明确性质能否在抽象语境中给出结构?这些都是弗里德兰德提议与几位合作者一起研究的一些问题。此外,他建议使用代数拓扑(形状理论)中发展的技术来研究多项式方程(代数几何)的解集。弗里德兰德计划鼓励年轻的数学家(包括他过去、现在和未来的学生)参与他的探索。他还计划继续在出版数学、组织数学活动和为国家数学界服务方面发挥积极作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Friedlander其他文献
K^sst for certain . . .
K^sst 肯定是的。
- DOI:
10.1093/imrn/rnx178 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Eric Friedlander - 通讯作者:
Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
- DOI:
10.1201/9781315152509-34 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Budhiraja;Eric Friedlander;Colin Guider;C. K. Jones;John Maclean - 通讯作者:
John Maclean
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:158.5
- 作者:
Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh - 通讯作者:
Sharon L. Walsh
AlgebraicK-theory eventually surjects onto topologicalK-theory
代数 K 理论最终满射到拓扑 K 理论。
- DOI:
10.1007/bf01389225 - 发表时间:
1982-10-01 - 期刊:
- 影响因子:3.600
- 作者:
William Dwyer;Eric Friedlander;Victor Snaith;Robert Thomason - 通讯作者:
Robert Thomason
Eric Friedlander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Friedlander', 18)}}的其他基金
Modular Representation Theory and Algebraic K-theory
模表示理论和代数K理论
- 批准号:
1067088 - 财政年份:2011
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966589 - 财政年份:2010
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
- 批准号:
0757890 - 财政年份:2008
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Algebraic Cycles, K-Theory, and Representation Theory
代数环、K 理论和表示论
- 批准号:
0300525 - 财政年份:2003
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
K-theories, Cycle Theories, and Cohomology Calculations
K 理论、循环理论和上同调计算
- 批准号:
9988130 - 财政年份:2000
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
- 批准号:
9400235 - 财政年份:1994
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛,1983 年 5 月
- 批准号:
8212504 - 财政年份:1983
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
- 批准号:
7921513 - 财政年份:1980
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
- 批准号:
7722727 - 财政年份:1978
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
相似国自然基金
一类特殊Abelian群的子群计数问题
- 批准号:12301006
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
分泌蛋白IGFBP2在儿童Group3/Group4型髓母细胞瘤恶性进展中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大兴安岭火山湖Group I长链烯酮冷季节温标研究与过去2000年温度定量重建
- 批准号:42073070
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:面上项目
近海沉积物中Marine Group I古菌新类群的发现、培养及其驱动碳氮循环的机制
- 批准号:92051115
- 批准年份:2020
- 资助金额:81.0 万元
- 项目类别:重大研究计划
MicroRNA靶向的漆酶基因及其所在Group 1 亚家族成员 调控水稻产量性状的功能机制
- 批准号:
- 批准年份:2019
- 资助金额:257 万元
- 项目类别:
超级增强子驱动的核心转录调控环路在Group_3亚型髓母细胞瘤的发病和治疗中的作用和机制
- 批准号:81972646
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
多维列联表数据下的属性控制图研究
- 批准号:11801210
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
c2orf48调控HMGB1促进鼻咽癌侵袭转移的机制研究
- 批准号:81872193
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
东北地区火山湖GroupⅠ类型的长链烯酮研究及其不饱和度温标的应用
- 批准号:41702187
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
中国源毕氏肠微孢子虫group 2基因型人兽共患特征的研究
- 批准号:31502055
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
- 批准号:
2302072 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
Continuing Grant
Categorical geometry and perfect group schemes
分类几何和完美群方案
- 批准号:
FT220100125 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
ARC Future Fellowships
Affine Group Schemes
仿射群方案
- 批准号:
573168-2022 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
University Undergraduate Student Research Awards
Affine Group Schemes
仿射群方案
- 批准号:
563287-2021 - 财政年份:2021
- 资助金额:
$ 17.94万 - 项目类别:
University Undergraduate Student Research Awards
Conformal Blocks and Affine Grassmannian Associated to Parahoric Group Schemes
共形块和仿射格拉斯曼与超视群方案相关
- 批准号:
2001365 - 财政年份:2020
- 资助金额:
$ 17.94万 - 项目类别:
Standard Grant
Applications of the theory of group schemes, especially on Lucas sequences and on the normal basis problem
群方案理论的应用,特别是在卢卡斯序列和正规基问题上的应用
- 批准号:
19K03408 - 财政年份:2019
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Development of Signature Schemes Optimized to Blockchains and IoT Devices
针对区块链和物联网设备优化的签名方案的开发
- 批准号:
19K20272 - 财政年份:2019
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-perturbative approximation schemes for the operator product expansion via the functional renormalization group
通过函数重正化群进行算子乘积展开的非微扰近似方案
- 批准号:
416523172 - 财政年份:2018
- 资助金额:
$ 17.94万 - 项目类别:
Research Grants
Finite Group Schemes and Normal Basis Problem
有限群方案和正规基问题
- 批准号:
26400024 - 财政年份:2014
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Around Kummer theories, from the view point of group schemes
围绕库默尔理论,从群体方案的角度
- 批准号:
23540027 - 财政年份:2011
- 资助金额:
$ 17.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)