Finite group schemes and semi-topological theories

有限群方案和半拓扑理论

基本信息

  • 批准号:
    0909314
  • 负责人:
  • 金额:
    $ 17.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

One aspect of Friedlander's proposed research is to advance the understanding of how finite groups and their generalizations act on vector spaces. The elementary example of Z/p x Z/p is one of the first examples encountered by beginning students of abstract algebra, yet its representation theory is ``wild" so that no listing of all finite dimensional representations is possible. Friedlander has introduced constructive techniques which apply to this and other specific examples yet extend to very general situations. Friedlander proposes to continue his study of representations of arbitrary finite group schemes using insights and techniques from algebraic geometry as well as more traditional techniques of algebra. One goal is to contribute to the understanding of specific examples; a second goal is to sketch a general theory which incorporates these examples; and a third goal is to utilize certain special actions to study the algebraic K-theory of certain singular projective varieties associated to finite group schemes. A second aspect of Friedlander's proposed research is the investigtion of algebraic cycles on algebraic varieties. This is one of the most fundamental and challenging topics of algebraic geometry, much studied in the past hundred years. Friedlander's focus will be on algebraic equivalence classes of cycles, influenced by insights from the better understood analogue in algebraic topology. Applications are envisioned to algebraic K-theory as well as algebraic geometry. How can finite groups of symmetries act on vector spaces over finite fields or over even more general fields? How does the consideration of more general algebraic objects (finite group schemes) reflect on the original problem, especially in basic, familiar examples? How does the geometry, at first unrecognized, constrain the possibilities and lead to concrete examples? Can the explicit nature of these examples give structures in abstract contexts? These are some of the questions Friedlander proposes to investigate with several collaborators. In addition, he proposes to study solution sets of polynomial equations (algebraic geometry) using techniques developed in algebraic topology (theory of shapes). Friedlander plans to encourage younger mathematicians (including his past, present, and future students) in his quest. He also plans to continue his active roles in publishing mathematics, organizing mathematical events, and serving the national mathematical community.
弗里德兰德(Friedlander)提出的研究的一个方面是促进对有限群体及其概括如何对向量空间作用的理解。 z/p x z/p的基本例子是抽象代数的初学者遇到的第一个例子之一,但其代表理论是``野性'',因此不可能列出所有有限的维度表示。弗里德兰德(Friedlander代数的几何形状以及更传统的代数技术是有助于对特定示例的理解;代数循环在代数品种上。 这是代数几何学的最基本和最具挑战性的主题之一,在过去的百年中进行了很多研究。 弗里德兰德(Friedlander)的重点将放在代数等效的周期类别上,这受到代数拓扑中更好理解的类似物的见解的影响。设想应用程序为代数K理论以及代数几何形状。 有限的对称组如何在有限场上或更一般的字段上对向量空间作出作用? 对更一般的代数对象(有限组方案)的考虑如何反映出原始问题,尤其是在基本的,熟悉的示例中? 几何形状最初是未被认可的,如何限制可能性并导致具体的例子? 这些例子的明确性能可以在抽象环境中提供结构吗?这些是Friedlander提出的一些问题,要与几位合作者进行调查。 此外,他建议使用代数拓扑(形状理论)中开发的技术研究多项式方程(代数几何)的解决方案集。 弗里德兰德(Friedlander)计划鼓励年轻的数学家(包括他的过去,现在和未来的学生)的追求。 他还计划在出版数学,组织数学事件以及为国家数学社区服务方面继续他的积极角色。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Friedlander其他文献

K^sst for certain . . .
K^sst 肯定是的。
  • DOI:
    10.1093/imrn/rnx178
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Friedlander
  • 通讯作者:
    Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    158.5
  • 作者:
    Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh
  • 通讯作者:
    Sharon L. Walsh

Eric Friedlander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Friedlander', 18)}}的其他基金

Modular Representation Theory and Algebraic K-theory
模表示理论和代数K理论
  • 批准号:
    1067088
  • 财政年份:
    2011
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
  • 批准号:
    0966589
  • 财政年份:
    2010
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0757890
  • 财政年份:
    2008
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
Algebraic Cycles, K-Theory, and Representation Theory
代数环、K 理论和表示论
  • 批准号:
    0300525
  • 财政年份:
    2003
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
K-theories, Cycle Theories, and Cohomology Calculations
K 理论、循环理论和上同调计算
  • 批准号:
    9988130
  • 财政年份:
    2000
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
  • 批准号:
    9704794
  • 财政年份:
    1997
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
  • 批准号:
    9400235
  • 财政年份:
    1994
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛​​,1983 年 5 月
  • 批准号:
    8212504
  • 财政年份:
    1983
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
  • 批准号:
    7921513
  • 财政年份:
    1980
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
  • 批准号:
    7722727
  • 财政年份:
    1978
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Standard Grant

相似国自然基金

信息交流对异质性团体感知觉决策的影响研究:基于认知计算的动态优势表征
  • 批准号:
    32300910
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
团体创新中的观念生成路径及其神经基础研究
  • 批准号:
    32300900
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于时间的团体竞争:连续时间框架下的理论和实验分析
  • 批准号:
    72373069
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
一类特殊Abelian群的子群计数问题
  • 批准号:
    12301006
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于分子互作研究多酚结构差异对面团体系面筋蛋白网络形成的调控机制
  • 批准号:
    32301998
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Finite Group Schemes and Normal Basis Problem
有限群方案和正规基问题
  • 批准号:
    26400024
  • 财政年份:
    2014
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial and geometric aspects of the representation theory of finite group schemes
有限群格式表示论的组合和几何方面
  • 批准号:
    123657812
  • 财政年份:
    2009
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Priority Programmes
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0757890
  • 财政年份:
    2008
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Continuing Grant
Representation of finite groups and association schemes
有限群和关联方案的表示
  • 批准号:
    12640012
  • 财政年份:
    2000
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Association schemes and characters of finite groups
有限群的关联方案和特征
  • 批准号:
    10640007
  • 财政年份:
    1998
  • 资助金额:
    $ 17.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了