Modular Representation Theory and Algebraic K-theory

模表示理论和代数K理论

基本信息

  • 批准号:
    1067088
  • 负责人:
  • 金额:
    $ 15.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The PI proposes to further pursue his investigation of modular representation theory, highlighting insights from algebraic geometry and a focus on the role of p-nilpotent operators, using a new perspective on support varieties for modules which has led to finer "local invariants", new computational tools, and interesting classes of representations. The techniques developed by the PI and his coauthors have led to "global invariants" in the form of algebraic vector bundles and the proposed research is to delve deeper into the significance of these invariants for finite group schemes, and to extend their applicability to other finite dimensional algebras as well as to rational representations of algebraic groups. The PI also proposes to further investigate algebraic cycles and algebraic vector bundles on algebraic varieties. This includes investigating the relationship between spaces of regular maps and spaces of continuous maps from projective smooth varieties to homogeneous varieties, revisiting earlier "semi-topological" constructions in order to offer insights into some of the most challenging questions of classical algebraic geometry. Techniques to be employed will come from abstract algebraic geometry, algebraic K-theory, and homotopy theory. The PI also proposes to study questions of real algebraic geometry using "stable methods" of morphic cohomology and semi-topological K-theory.Goals of the proposed research are to find new structures and new relationships for mathematical objects which are classical, familiar, and fundamental. His research at times is concrete and calculational, at times abstract and theoretical. The PI proposes to augment his recent ``elementary" constructions in representation theory and his "semi-topological" approach to algebraic geometry with new constructions, foundational results, explicit examples, and general results. In representation theory, the PI proposes to investigate the actions of group-like structures on vector spaces which are not part of the classical framework but which are highly important to many aspects of mathematics. Results obtained from this approach to modular representation theory may provide enlightening examples related to difficult conjectures in algebraic geometry. Motivation for this approach arises in part from the explicit nature of the actions which enable the construction of examples for important, but very difficult geometric structures. In algebraic geometry, the PI will continue to search for techniques which might illuminate some of the most fundamental challenges which arise in the geometric study of solutions to polynomial equations.
PI建议进一步追求他对模块化表示理论的研究,突出代数几何的见解和对p-幂零算子的作用的关注,使用对模块支持多样性的新视角,这导致了更精细的“局部不变量”,新的计算工具和有趣的表示类。由PI和他的合著者开发的技术导致了“全球不变量”的形式的代数向量束和拟议的研究是深入研究这些不变量的意义有限群计划,并将其适用性扩展到其他有限维代数以及代数群的有理表示。PI还建议进一步研究代数簇上的代数圈和代数向量丛。这包括调查空间之间的关系,经常地图和空间的连续映射,从投影光滑品种齐次品种,重温早期的“半拓扑”建设,以提供洞察到一些最具挑战性的问题,经典代数几何。所采用的技术将来自抽象代数几何,代数K理论和同伦理论。PI还建议使用形态上同调和半拓扑K理论的“稳定方法”来研究真实的代数几何问题。所提出的研究目标是为经典的、熟悉的和基本的数学对象找到新的结构和新的关系。 他的研究有时是具体和计算,有时抽象和理论。 PI建议增加他最近的“基本”建设的代表性理论和他的“半拓扑”方法代数几何与新的建设,基础的结果,明确的例子,和一般的结果。 在表示论中,PI建议研究向量空间上的类群结构的作用,这些向量空间不是经典框架的一部分,但对数学的许多方面都非常重要。 从这种方法得到的结果模块表示理论可能会提供启发性的例子,在代数几何中的困难的代数。 这种方法的动机部分来自于明确的性质的行动,使建设的例子,重要的,但非常困难的几何结构。 在代数几何,PI将继续寻找技术,这可能会照亮一些最根本的挑战,出现在几何研究的解决方案多项式方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Friedlander其他文献

K^sst for certain . . .
K^sst 肯定是的。
  • DOI:
    10.1093/imrn/rnx178
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Friedlander
  • 通讯作者:
    Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    158.5
  • 作者:
    Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh
  • 通讯作者:
    Sharon L. Walsh
AlgebraicK-theory eventually surjects onto topologicalK-theory
代数 K 理论最终满射到拓扑 K 理论。
  • DOI:
    10.1007/bf01389225
  • 发表时间:
    1982-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    William Dwyer;Eric Friedlander;Victor Snaith;Robert Thomason
  • 通讯作者:
    Robert Thomason

Eric Friedlander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Friedlander', 18)}}的其他基金

FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
  • 批准号:
    0966589
  • 财政年份:
    2010
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0757890
  • 财政年份:
    2008
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0909314
  • 财政年份:
    2008
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Algebraic Cycles, K-Theory, and Representation Theory
代数环、K 理论和表示论
  • 批准号:
    0300525
  • 财政年份:
    2003
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
K-theories, Cycle Theories, and Cohomology Calculations
K 理论、循环理论和上同调计算
  • 批准号:
    9988130
  • 财政年份:
    2000
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
  • 批准号:
    9704794
  • 财政年份:
    1997
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
  • 批准号:
    9400235
  • 财政年份:
    1994
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛​​,1983 年 5 月
  • 批准号:
    8212504
  • 财政年份:
    1983
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
  • 批准号:
    7921513
  • 财政年份:
    1980
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
  • 批准号:
    7722727
  • 财政年份:
    1978
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant

相似海外基金

An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
  • 批准号:
    23K19018
  • 财政年份:
    2023
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
  • 批准号:
    EP/W001683/1
  • 财政年份:
    2022
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Fellowship
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
  • 批准号:
    2202012
  • 财政年份:
    2022
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
  • 批准号:
    2101791
  • 财政年份:
    2021
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Standard Grant
Modular Lie algebras and representation theory
模李代数和表示论
  • 批准号:
    2281585
  • 财政年份:
    2019
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Studentship
The modular representation theory of combinatorics structures and its applications
组合结构的模表示理论及其应用
  • 批准号:
    18K03245
  • 财政年份:
    2018
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of modular Lie algebras and superalgebras
模李代数和超代数的表示论
  • 批准号:
    EP/R018952/1
  • 财政年份:
    2018
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Research Grant
Geometric Methods in Modular Representation Theory
模表示论中的几何方法
  • 批准号:
    1802241
  • 财政年份:
    2018
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
New dualities in modular representation theory
模表示理论中的新对偶性
  • 批准号:
    DP180102563
  • 财政年份:
    2018
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Discovery Projects
Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
  • 批准号:
    1700985
  • 财政年份:
    2017
  • 资助金额:
    $ 15.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了