Modular Representation Theory and Algebraic K-theory
模表示理论和代数K理论
基本信息
- 批准号:1067088
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes to further pursue his investigation of modular representation theory, highlighting insights from algebraic geometry and a focus on the role of p-nilpotent operators, using a new perspective on support varieties for modules which has led to finer "local invariants", new computational tools, and interesting classes of representations. The techniques developed by the PI and his coauthors have led to "global invariants" in the form of algebraic vector bundles and the proposed research is to delve deeper into the significance of these invariants for finite group schemes, and to extend their applicability to other finite dimensional algebras as well as to rational representations of algebraic groups. The PI also proposes to further investigate algebraic cycles and algebraic vector bundles on algebraic varieties. This includes investigating the relationship between spaces of regular maps and spaces of continuous maps from projective smooth varieties to homogeneous varieties, revisiting earlier "semi-topological" constructions in order to offer insights into some of the most challenging questions of classical algebraic geometry. Techniques to be employed will come from abstract algebraic geometry, algebraic K-theory, and homotopy theory. The PI also proposes to study questions of real algebraic geometry using "stable methods" of morphic cohomology and semi-topological K-theory.Goals of the proposed research are to find new structures and new relationships for mathematical objects which are classical, familiar, and fundamental. His research at times is concrete and calculational, at times abstract and theoretical. The PI proposes to augment his recent ``elementary" constructions in representation theory and his "semi-topological" approach to algebraic geometry with new constructions, foundational results, explicit examples, and general results. In representation theory, the PI proposes to investigate the actions of group-like structures on vector spaces which are not part of the classical framework but which are highly important to many aspects of mathematics. Results obtained from this approach to modular representation theory may provide enlightening examples related to difficult conjectures in algebraic geometry. Motivation for this approach arises in part from the explicit nature of the actions which enable the construction of examples for important, but very difficult geometric structures. In algebraic geometry, the PI will continue to search for techniques which might illuminate some of the most fundamental challenges which arise in the geometric study of solutions to polynomial equations.
PI提议进一步追求对模块化表示理论的调查,强调代数几何形状的见解,并着重于P-Nilpotent Operators的作用,利用对模块的支持品种的新观点,这些观点导致了“本地不变式”,新的计算工具,新的计算工具和有趣的表示。 PI及其合着者开发的技术以代数矢量捆绑的形式导致了“全球不变性”,拟议的研究是为了深入研究这些不变的有限组方案的重要性,并将它们的适用性扩展到其他有限的尺寸代数的代数层,并将其扩展到Algebality Algebrationals Algebrationals的其他有限尺寸。 PI还建议进一步研究代数品种上的代数循环和代数载体束。这包括研究常规地图的空间与从投射平滑品种到均匀品种的连续地图之间的关系,重新审视了早期的“半目标”结构,以便深入了解古典代数几何学的一些最具挑战性的问题。要使用的技术将来自抽象代数几何,代数K理论和同型理论。 PI还提议使用形态的共同体和半主体K理论的“稳定方法”来研究实际代数几何的问题。拟议的研究的目标是找到新的结构和新的关系,以了解具有古典,熟悉和基本性的数学对象的新结构和新的关系。 他的研究有时是具体的,有时是抽象和理论的。 PI建议在代表理论中增强他最近的``基本''结构及其“半音阶”方法对代数几何的方法,并通过新的结构,基础结果,明确的实例,明确的实例,明确的例子和一般结果。在代表理论中,PI提出,PI提出了在群体中不受群体框架的行动而不是在许多方面进行诸如群体框架的一部分,但这些框架的一部分是多个基本框架的一部分。模块化的代表理论可以提供与代数几何形状中的困难猜想有关的启发性例子,部分原因是该行动的明确性质,可以为重要的几何结构而建立示例,以实现重要的几何形状。方程式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Friedlander其他文献
K^sst for certain . . .
K^sst 肯定是的。
- DOI:
10.1093/imrn/rnx178 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Eric Friedlander - 通讯作者:
Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
- DOI:
10.1201/9781315152509-34 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Budhiraja;Eric Friedlander;Colin Guider;C. K. Jones;John Maclean - 通讯作者:
John Maclean
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:158.5
- 作者:
Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh - 通讯作者:
Sharon L. Walsh
Eric Friedlander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Friedlander', 18)}}的其他基金
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966589 - 财政年份:2010
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
- 批准号:
0757890 - 财政年份:2008
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
- 批准号:
0909314 - 财政年份:2008
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
Algebraic Cycles, K-Theory, and Representation Theory
代数环、K 理论和表示论
- 批准号:
0300525 - 财政年份:2003
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
K-theories, Cycle Theories, and Cohomology Calculations
K 理论、循环理论和上同调计算
- 批准号:
9988130 - 财政年份:2000
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
- 批准号:
9400235 - 财政年份:1994
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛,1983 年 5 月
- 批准号:
8212504 - 财政年份:1983
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
- 批准号:
7921513 - 财政年份:1980
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
- 批准号:
7722727 - 财政年份:1978
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
相似国自然基金
基于随机信号自适应稀疏表示理论的数据加密算法研究
- 批准号:62306113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多尺度自适应单纯复形表示学习的高阶链路预测理论与方法研究
- 批准号:62366030
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于李群状态表示的惯性基导航信息融合理论与方法研究
- 批准号:62373367
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
量子群和Schur代数的表示理论
- 批准号:12371032
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
分形谱测度的谱表示及其在维数理论中的应用
- 批准号:12301105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
- 批准号:
23K19018 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
- 批准号:
EP/W001683/1 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别:
Fellowship
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
Modular Representation Theory and Categorification with Applications
模块化表示理论及其分类及其应用
- 批准号:
2101791 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
Modular Lie algebras and representation theory
模李代数和表示论
- 批准号:
2281585 - 财政年份:2019
- 资助金额:
$ 15.4万 - 项目类别:
Studentship