K-theories, Cycle Theories, and Cohomology Calculations

K 理论、循环理论和上同调计算

基本信息

  • 批准号:
    9988130
  • 负责人:
  • 金额:
    $ 18.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-15 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

Friedlander-Abstract The relationship between algebraic K-theory and algebraic cycles is of fundamental importance. Friedlander proposes to consider his investigations of this relationship by continuing to contemplate the spectral sequence developed in collaboration with Suslin and by studying Chern classes to various cohomology theories. Much of Friedlander's effort will be directed to semi-topological K-theory (being developed in collaboration with Mark Walker) and its relationship with morphic cohomology (developed in collaboration with Blaine Lawson). Friedlander also proposes to further investigate the representation theory of algebras related to algebraic groups, in part through the thesis work of several Ph.D. students.Throughout the twentieth century, algebraic topology (mathematics of "bending and twisting") and algebraic geometry (mathematics of "surfaces" coming from graphing polynomial equations) enjoyed a very positive interactive relationship. The types of geometric objects ("surfaces") studied by topologists can be more general than geometric "surfaces" called algebraic varieties, but many of the most basic and interesting topological "surfaces" are algebraic varieties. Constructions and techniques arising naturally in either geometry or topology continue to be successfully imported to the other area, often with surprising computational or conceptual results. Much of the proposed work is to use techniques and to pose questions that are topological in character to gain a better understanding of some central aspects of algebraic geometry.
摘要代数K-理论与代数圈之间的关系是非常重要的。弗里德兰德建议,通过继续思考与苏斯林合作开发的谱序列,并通过研究各种上同调理论的陈类,来考虑他对这种关系的研究。Friedlander的大部分工作将指向半拓扑K-理论(与Mark Walker合作开发)及其与态上同调(与Blaine Lawson合作开发)的关系。弗里德兰德还建议进一步研究与代数群有关的代数的表示理论,部分是通过几名博士生的论文工作。在整个20世纪,代数拓扑学(弯曲和扭转的数学)和代数几何(通过绘制多项式方程来表示曲面的数学)享有非常积极的互动关系。拓扑学家研究的几何对象(曲面)的类型可以比称为代数族的几何“曲面”更一般,但许多最基本和有趣的拓扑“曲面”是代数族。几何学或拓扑学中自然产生的构造和技术继续被成功地引入到另一个领域,通常会产生令人惊讶的计算或概念结果。许多建议的工作是使用技术和提出具有拓扑性的问题,以更好地理解代数几何的一些核心方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Friedlander其他文献

K^sst for certain . . .
K^sst 肯定是的。
  • DOI:
    10.1093/imrn/rnx178
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Friedlander
  • 通讯作者:
    Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    158.5
  • 作者:
    Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh
  • 通讯作者:
    Sharon L. Walsh
AlgebraicK-theory eventually surjects onto topologicalK-theory
代数 K 理论最终满射到拓扑 K 理论。
  • DOI:
    10.1007/bf01389225
  • 发表时间:
    1982-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    William Dwyer;Eric Friedlander;Victor Snaith;Robert Thomason
  • 通讯作者:
    Robert Thomason

Eric Friedlander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Friedlander', 18)}}的其他基金

Modular Representation Theory and Algebraic K-theory
模表示理论和代数K理论
  • 批准号:
    1067088
  • 财政年份:
    2011
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
  • 批准号:
    0966589
  • 财政年份:
    2010
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0757890
  • 财政年份:
    2008
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0909314
  • 财政年份:
    2008
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
Algebraic Cycles, K-Theory, and Representation Theory
代数环、K 理论和表示论
  • 批准号:
    0300525
  • 财政年份:
    2003
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
  • 批准号:
    9704794
  • 财政年份:
    1997
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
  • 批准号:
    9400235
  • 财政年份:
    1994
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛​​,1983 年 5 月
  • 批准号:
    8212504
  • 财政年份:
    1983
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
  • 批准号:
    7921513
  • 财政年份:
    1980
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
  • 批准号:
    7722727
  • 财政年份:
    1978
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant

相似国自然基金

高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
稀有人参皂苷改善胰岛素抵抗背景下心肌缺血/再灌注损伤的研究——基于Randle cycle调节
  • 批准号:
    81573642
  • 批准年份:
    2015
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
基于Ricci流与Normal Cycle理论的非限制环境下三维人脸识别研究
  • 批准号:
    11401464
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
动态p-cycle在电网广域系统中的共享风险保护
  • 批准号:
    51307051
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
  • 批准号:
    DE240101045
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Discovery Early Career Researcher Award
Investigating ubiquitination-regulated cell cycle events underpinning malaria transmission
研究泛素化调节的细胞周期事件支撑疟疾传播
  • 批准号:
    MR/Y013174/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Research Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Research Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
  • 批准号:
    2339556
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
CAREER: RACING -- Resolving the Activity Cycle In the Nearest Galaxies
职业:赛车——解决最近星系的活动周期问题
  • 批准号:
    2339670
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
  • 批准号:
    10749856
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
  • 批准号:
    2405325
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Standard Grant
CAREER: Constraining the high-latitude ocean carbon cycle: Leveraging the Ocean Observatories Initiative (OOI) Global Arrays as marine biogeochemical time series
职业:限制高纬度海洋碳循环:利用海洋观测计划(OOI)全球阵列作为海洋生物地球化学时间序列
  • 批准号:
    2338450
  • 财政年份:
    2024
  • 资助金额:
    $ 18.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了