Algebraic Cycles, K-Theory, and Representation Theory

代数环、K 理论和表示论

基本信息

  • 批准号:
    0300525
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

DMS-0300525Eric M. FriedlanderFriedlander proposes to investigate topics in algebra, geometry,and topology. Each of these topics entail a synthesis of techniquesand results from various mathematical fields with the goal of progresstoward solutions of fundamental problems, and each has seen progressachieved by Friedlander and his collaborators. Firstly, Friedlanderproposes to investigate algebraic K-theory and algebraic cycles onalgebraic varieties, with the expectation that his investigation willcontribute both specific computations and general properties of thesefundamental invariants. Friedlander will seek to produce topologicalconstructions associated to objects arising in algebraic geometrywhich closely reflect subtle aspects of algebraic cycles and algebraicK-theory. These constructions, many planned in conjunction with MarkWalker, are envisioned to involve a blend of techniques from stablehomotopy theory and recent techniques developed by Voevodsky for motiviccohomology. In particular, Friedlander plans to investigate further thesemi-topological K-theory of varieties and its connections with algebraicand topological K-theory. The second topic involves the introductionof new spaces determined by the representation theory of a finite groupscheme which provide a new perspective on cohomological support varieties.The goal of this research, in part to be achieved in collaboration withJulia Pevtsova, is to produce finer invariants in the general context offinite group schemes which are accessible to computations and which extendour understanding of (modular) representations. Finally, in joint workwith Vincent Franjou, Friedlander proposes to study the cohomology ofpolynomial bifunctors with the aim of improving earlier computations byhimself and others to cases more closely related to questions in K-theory.Mathematics continues to reveal beautiful relationships which are bothuseful and surprising. This project involves the study of shapes(topology) which arise as the solutions of polynomial equations.Such a study uses geometric insights and algebraic manipulations,augmented by constructions and computations of many mathematicians overthe centuries. Some of the questions considered still seem dauntinglydifficult, but partial progress towards their solutions will lead toadvances in different branches of mathematics and mathematical physics.A second aspect of this project is the study of formal algebraic objectswhich arise as symmetries of familiar structures. Once again, geometryis blended with algebra to provide motivation for questions to be askedas well as to suggest methods of solution. A third aspect consists ofefforts to maintain the strength of the national effort in mathematics bymentoring graduate students and junior faculty, by organizing mathematicalmeetings, by editorial efforts for journals and special volumes, andby participation in the on-going discussion of policy issues for theAmerican Mathematical Society.
DMS-0300525 Eric M. FriedlanderFriedlander建议调查代数,几何和拓扑学的主题。 每一个主题都需要综合各种数学领域的技术和结果,目标是解决基本问题,每个主题都看到了Friedlander和他的合作者取得的进展。 首先,Friedlander提出研究代数簇上的代数K-理论和代数圈,期望他的研究将有助于这些基本不变量的具体计算和一般性质。 弗里德兰德将寻求产生topologicalconstructions相关的对象所产生的代数geometrywhich密切反映微妙方面的代数周期和algebraicK-理论。 这些建设,许多计划与马克沃克,设想涉及混合技术从stablehomotopy理论和最近的技术开发的Voevodsky motiviccohomology。 特别是,弗里德兰德计划进一步调查thesemi-topological K-理论的品种和它的连接与algebraicand拓扑K-理论。 第二个主题涉及到introductionof新的空间所确定的表示理论的有限群scheme提供了一个新的视角上同调支持variety.The本研究的目标,部分将实现与朱莉娅Pevtsova合作,是产生更精细的不变量的一般上下文中的有限群计划,可访问的计算和扩展我们的理解(模块化)表示。 最后,在与文森特Franjou联合工作,Friedlander提出研究多项式双函子的上同调,目的是改进自己和其他人的早期计算更密切相关的问题,在K理论的情况下,数学继续揭示美丽的关系,这是既有用又令人惊讶。 这个项目涉及到形状(拓扑学)的研究,这些形状是由多项式方程的解产生的。这样的研究使用几何的见解和代数操作,并通过几个世纪以来许多数学家的构造和计算来增强。 有些问题似乎仍然令人生畏的困难,但部分进展,对他们的解决方案将导致进步的不同分支的数学和数学物理。第二个方面,这个项目是研究正式的代数对象出现的对称性熟悉的结构。 几何再次与代数相结合,为提出问题提供动力并提出解决方法。 第三个方面包括ofecourse保持实力的国家努力在数学辅导研究生和初级教师,通过组织学术会议,编辑工作的期刊和特别卷,并通过参与正在进行的讨论的政策问题为theAmerican Mathematical Society。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Friedlander其他文献

K^sst for certain . . .
K^sst 肯定是的。
  • DOI:
    10.1093/imrn/rnx178
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Friedlander
  • 通讯作者:
    Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    158.5
  • 作者:
    Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh
  • 通讯作者:
    Sharon L. Walsh
AlgebraicK-theory eventually surjects onto topologicalK-theory
代数 K 理论最终满射到拓扑 K 理论。
  • DOI:
    10.1007/bf01389225
  • 发表时间:
    1982-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    William Dwyer;Eric Friedlander;Victor Snaith;Robert Thomason
  • 通讯作者:
    Robert Thomason

Eric Friedlander的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Friedlander', 18)}}的其他基金

Modular Representation Theory and Algebraic K-theory
模表示理论和代数K理论
  • 批准号:
    1067088
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
  • 批准号:
    0966589
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0757890
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
  • 批准号:
    0909314
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
K-theories, Cycle Theories, and Cohomology Calculations
K 理论、循环理论和上同调计算
  • 批准号:
    9988130
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
  • 批准号:
    9704794
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
  • 批准号:
    9400235
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛​​,1983 年 5 月
  • 批准号:
    8212504
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
  • 批准号:
    7921513
  • 财政年份:
    1980
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
  • 批准号:
    7722727
  • 财政年份:
    1978
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Asymptotic Hodge Theory, Fibered Motives, and Algebraic Cycles
渐近霍奇理论、纤维动机和代数圈
  • 批准号:
    2101482
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Support of US Participants in the Research Program: K-Theory, Algebraic Cycles and Motivic Homotopy Theory, Cambridge, UK.
美国参与者对研究项目的支持:K 理论、代数环和动机同伦理论,英国剑桥。
  • 批准号:
    1949369
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Algebraic cycles and Iwasawa theory
代数环和岩泽理论
  • 批准号:
    17H02836
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Motive theory and algebraic cycles based on Weil reciprocity
基于Weil互易性的动机理论和代数循环
  • 批准号:
    15K04773
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hodge theory and algebraic cycles
霍奇理论和代数圈
  • 批准号:
    1303105
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Recent Advances in Hodge Theory: Period Domains, Algebraic Cycles, and Arithmetic
霍奇理论的最新进展:周期域、代数环和算术
  • 批准号:
    1259024
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometry and arithmetics through the theory of algebraic cycles
通过代数循环理论学习几何和算术
  • 批准号:
    EP/K005545/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Algebraic cycles, regulators and Hodge theory
代数环、调节子和霍奇理论
  • 批准号:
    121004-2008
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic Cycles, Hodge Theory, and Arithmetic
代数圈、霍奇理论和算术
  • 批准号:
    1068974
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Algebraic cycles, regulators and Hodge theory
代数环、调节子和霍奇理论
  • 批准号:
    121004-2008
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了