Mathematical Sciences: Algebraic Cycles and the Homotopy Theory of Groups
数学科学:代数圈和群的同伦论
基本信息
- 批准号:9400235
- 负责人:
- 金额:$ 31.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-15 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9400235 Friedlander Friedlander plans to continue his investigation of algebraic cycles, using techniques from algebraic geometry and algebraic topology. The program of Friedlander and others holds promise in that it introduces a new perspective and imports techniques of algebraic topology. Several specific avenues of research appear ripe for further exploration: topological filtrations on algebraic cycles and homology, duality between Lawson homology and morphic cohomology, motivic complexes in the guise of algebraic cycle homology, and Chern classes in the context of algebraic cycle spaces. In addition to this study of algebraic cycles, Friedlander will continue his efforts to study the geometry implicit in the cohomology of infinitesimal algebraic groups. Priddy plans to continue his program to study the homotopy type of classifying spaces of groups and related constructions. Many of the most important questions in homotopy theory are related to classifying spaces of finite or compact Lie groups. Recently there have also developed interesting and powerful connections between topology and group theory, especially the cohomology and modular representation theory of finite groups. With the solution of the Segal and Sullivan Conjectures, this area has developed rapidly in recent years to the point where fundamental questions are being answered. Perhaps the most important of these is to determine the exact relationship between the stable and unstable homotopy types of a classifying space, completed at a prime p, and the p-local structure of its underlying group. Algebraic geometry is the study of solution sets of polynomial equations (i.e., algebraic varieties) using geometric techniques. Partial answers to questions in algebraic geometry have led to progress in fields ranging from complexity theory of computer science to geometric topology to number theory. Friedlander intends to study algebraic varieties, using methods borrowed from algebraic topology, as well as modern techniques of algebraic geometry. The use of topology involves the study of continuously varying families of structures, which have traditionally been considered by other means. The hope is that these new techniques will offer insight into deep and long-standing problems of algebraic geometry. Algebraic topology is the study of geometric objects by means of algebraic techniques. Exciting new developments have led to advances in group theory, using algebraic topology, thus reversing the direction of the usual flow of information. Groups are the fundamental symmetries occurring in all sciences, including areas involving codes, and structures in physics. Priddy hopes that this new approach will lead to a better understanding of the relationship between these fields. ***
小行星9400235 弗里德兰德计划继续他的调查代数周期,使用技术从代数几何和代数拓扑。 该计划的弗里德兰德和其他人持有的承诺,因为它引入了一个新的角度和进口技术的代数拓扑。 几个具体途径的研究出现成熟的进一步探索:拓扑filtrations代数循环和同源性,劳森同调和形态上同调之间的对偶性,动机复合物的幌子代数循环同源性,陈类的背景下,代数循环空间。 除了这项研究的代数周期,弗里德兰德将继续努力研究几何隐含在上同调的无穷小代数群。 Priddy计划继续他的计划,研究同伦类型的分类空间的群体和相关的建设。 同伦理论中许多最重要的问题都与有限或紧李群空间的分类有关。 最近也有发展有趣和强大的连接拓扑和群论,特别是上同调和有限群的模表示理论。 随着Segal猜想和Sullivan猜想的提出,这一领域近年来发展迅速,基本问题得到了解答。 也许其中最重要的是确定分类空间的稳定和不稳定同伦类型之间的确切关系,在素数p处完成,以及其基础群的p-局部结构。 代数几何是研究多项式方程的解集(即,代数簇)使用几何技术。 对代数几何问题的部分解答导致了从计算机科学的复杂性理论到几何拓扑学再到数论等领域的进步。 弗里德兰德打算研究代数品种,使用方法借用代数拓扑,以及现代技术的代数几何。 拓扑学的使用涉及到连续变化的结构族的研究,这些结构族传统上被认为是通过其他手段。 希望这些新技术将提供深入和长期存在的代数几何问题的见解。 代数拓扑学是通过代数技术来研究几何对象。 令人兴奋的新发展导致了群论的进步,使用代数拓扑,从而扭转了通常信息流的方向。 群是发生在所有科学中的基本对称性,包括涉及代码的领域,以及物理学中的结构。 Priddy希望这种新方法能更好地理解这些领域之间的关系。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Friedlander其他文献
K^sst for certain . . .
K^sst 肯定是的。
- DOI:
10.1093/imrn/rnx178 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Eric Friedlander - 通讯作者:
Eric Friedlander
Assimilating Data into Models
将数据同化到模型中
- DOI:
10.1201/9781315152509-34 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Budhiraja;Eric Friedlander;Colin Guider;C. K. Jones;John Maclean - 通讯作者:
John Maclean
Community-Based Cluster-Randomized Trial to Reduce Opioid Overdose Deaths.
以社区为基础的整群随机试验,以减少阿片类药物过量死亡。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:158.5
- 作者:
Jeffrey H. Samet;N. El;T. J. Winhusen;Rebecca D Jackson;Emmanuel Oga;Redonna Chandler;Jennifer Villani;Bridget Freisthler;Joella W Adams;Arnie Aldridge;Angelo Angerame;Denise C. Babineau;Sarah M Bagley;Trevor Baker;Peter Balvanz;Carolina Barbosa;Joshua Barocas;Tracy A. Battaglia;Dacia D Beard;Donna Beers;Derek Blevins;Nicholas Bove;C. Bridden;Jennifer L Brown;Heather M. Bush;Joshua L. Bush;Ryan Caldwell;Katherine Calver;Deirdre Calvert;A. N. Campbell;Jane Carpenter;Rachel Caspar;Deborah Chassler;Joan Chaya;Debbie M. Cheng;Chinazo O Cunningham;Anindita Dasgupta;James L. David;Alissa Davis;Tammy Dean;M. Drainoni;Barry Eggleston;Laura C. Fanucchi;Daniel J. Feaster;Soledad Fernandez;Wilson Figueroa;Darcy A Freedman;Patricia R. Freeman;C. Freiermuth;Eric Friedlander;K. Gelberg;Erin B. Gibson;L. Gilbert;LaShawn Glasgow;Dawn A. Goddard;Stephen Gomori;Dawn E Gruss;Jennifer Gulley;Damara N. Gutnick;Megan E Hall;Nicole Harger Dykes;Sarah L. Hargrove;Kristin J. Harlow;Aumani Harris;Daniel R. Harris;Donald W Helme;JaNae Holloway;Juanita Hotchkiss;Terry Huang;Timothy R. Huerta;Timothy Hunt;A. Hyder;Van Ingram;Tim Ingram;Emily Kauffman;Jennifer L Kimball;Elizabeth N. Kinnard;Charles E. Knott;Hannah K. Knudsen;Michael W Konstan;Sarah Kosakowski;Marc R. Larochelle;Hannah M Leaver;Patricia A LeBaron;R. C. Lefebvre;Frances R Levin;Nikki Lewis;Nikki Lewis;Michelle R. Lofwall;David W. Lounsbury;Jamie E Luster;Michael S. Lyons;Aimee Mack;Katherine R. Marks;Stephanie Marquesano;Rachel Mauk;A. McAlearney;Kristin McConnell;Margaret L McGladrey;Jason McMullan;Jennifer Miles;Rosie Munoz Lopez;Alisha Nelson;Jessica L Neufeld;Lisa Newman;Trang Q Nguyen;Edward V. Nunes;Devin A Oller;Carrie B. Oser;Douglas R. Oyler;Sharon Pagnano;T. V. Parran;Joshua Powell;Kim Powers;William Ralston;Kelly Ramsey;Bruce D. Rapkin;Jennifer G Reynolds;Monica F. Roberts;Will Robertson;Peter Rock;Emma Rodgers;Sandra Rodriguez;Maria Rudorf;Shawn Ryan;Pamela Salsberry;Monika Salvage;Nasim Sabounchi;Merielle Saucier;Caroline Savitzky;Bruce Schackman;Elizabeth Schady;Eric E. Seiber;Aimee Shadwick;Abigail Shoben;Michael D Slater;S. Slavova;Drew Speer;Joel Sprunger;Laura E Starbird;Michele Staton;Michael D. Stein;D. Stevens;T. J. Stopka;A. Sullivan;Hilary L. Surratt;Rachel Sword Cruz;Jeffery C. Talbert;Jessica L Taylor;Katherine L Thompson;Nathan Vandergrift;Rachel Vickers;Deanna J Vietze;Daniel M. Walker;Alexander Y. Walley;Scott T Walters;Roger Weiss;Philip M. Westgate;E. Wu;April M Young;Gary A Zarkin;Sharon L. Walsh - 通讯作者:
Sharon L. Walsh
AlgebraicK-theory eventually surjects onto topologicalK-theory
代数 K 理论最终满射到拓扑 K 理论。
- DOI:
10.1007/bf01389225 - 发表时间:
1982-10-01 - 期刊:
- 影响因子:3.600
- 作者:
William Dwyer;Eric Friedlander;Victor Snaith;Robert Thomason - 通讯作者:
Robert Thomason
Eric Friedlander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Friedlander', 18)}}的其他基金
Modular Representation Theory and Algebraic K-theory
模表示理论和代数K理论
- 批准号:
1067088 - 财政年份:2011
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966589 - 财政年份:2010
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
- 批准号:
0757890 - 财政年份:2008
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
Finite group schemes and semi-topological theories
有限群方案和半拓扑理论
- 批准号:
0909314 - 财政年份:2008
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
Algebraic Cycles, K-Theory, and Representation Theory
代数环、K 理论和表示论
- 批准号:
0300525 - 财政年份:2003
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
K-theories, Cycle Theories, and Cohomology Calculations
K 理论、循环理论和上同调计算
- 批准号:
9988130 - 财政年份:2000
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
U.S.-France Seminar in Algebraic K-Theory, Marseilles, France, May 1983
美法代数 K 理论研讨会,法国马赛,1983 年 5 月
- 批准号:
8212504 - 财政年份:1983
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Conference on Algebraic K-Theory, Evanston, Illinois in March 1980
代数 K 理论会议,伊利诺伊州埃文斯顿,1980 年 3 月
- 批准号:
7921513 - 财政年份:1980
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Relationships Between Abstract Algebraic Geometry and Algebraic Topology
抽象代数几何与代数拓扑之间的关系
- 批准号:
7722727 - 财政年份:1978
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences -- Topological and algebraic regularity properties of nuclear C*-algebras
NSF/CBMS 数学科学区域会议 -- 核 C* 代数的拓扑和代数正则性性质
- 批准号:
1138022 - 财政年份:2011
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences: Algebraic Topology in Applied Mathematics; Summer 2009, Cleveland, OH
CBMS 数学科学区域会议:应用数学中的代数拓扑;
- 批准号:
0834140 - 财政年份:2009
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Algebraic and Topological Combinatorics of Ordered Sets - 18 - 22 July, 2005
CBMS 数学科学区域会议 - 有序集的代数和拓扑组合 - 2005 年 7 月 18 - 22 日
- 批准号:
0434402 - 财政年份:2005
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in Mathematical Sciences--'Algebraic Combinatorics'- June 4, 2001 - June 8, 2001
NSF/CBMS 数学科学地区会议 - “代数组合”- 2001 年 6 月 4 日 - 2001 年 6 月 8 日
- 批准号:
0085656 - 财政年份:2001
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Algebraic and Analytic Methods in the Mathematical Sciences
数学科学中的代数和分析方法
- 批准号:
9912192 - 财政年份:2000
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: L-Independence in Arithmetic Algebraic Geometry
数学科学:算术代数几何中的 L 独立性
- 批准号:
9796240 - 财政年份:1997
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Transformation Groups
数学科学:代数变换群
- 批准号:
9701200 - 财政年份:1997
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Mathematical Sciences/GIG: Southwest Center for Arithmetical Algebraic Geometry
数学科学/GIG:西南算术代数几何中心
- 批准号:
9709662 - 财政年份:1997
- 资助金额:
$ 31.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Methods in Systems Theory
数学科学:系统论中的代数方法
- 批准号:
9610389 - 财政年份:1997
- 资助金额:
$ 31.3万 - 项目类别:
Continuing Grant














{{item.name}}会员




