DC: Small: Efficient Algorithms for Data-intensive Bio-computing

DC:小型:数据密集型生物计算的高效算法

基本信息

  • 批准号:
    0916463
  • 负责人:
  • 金额:
    $ 43.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

The field of bioinformatics and computational biology is experiencing a data revolution unlike any other scientific computing field. Experimental techniques to procure data have increased in throughput, improved in accuracy, and reduced in costs. The preponderance of data has limited the scalability of existing software tools. In a pursuit to understand the complexities and challenges that stem from designing algorithms for data-intensive biocomputing, this project is developing new approaches for two major problems in protein bioinformatics: i) identification of protein families and homology clusters; and ii) peptide identification from large-scale mass spectrometry data. The former requires large-scale graph analysis and the latter requires large-scale database search. The project is investigating a multi-faceted approach which involves designing space-efficient algorithms for massively parallel machines, developing algorithmic heuristics for reducing the time to solution, evaluating the MapReduce paradigm as an alternate computing model, and deploying multicore architectures for fine-grain parallelism. Project outcomes will include new algorithms and open-source software libraries for large-scale protein bioinformatics, including a more generic library for data-intensive biocomputing. The project is addressing a critical need for scalable methods in protein bioinformatics and in doing so will usher in state-of-the-art computing models and concepts from both software and hardware into mainstream biocomputing. Broader impacts include creating interdisciplinary research opportunities for undergraduate and graduate students, and new interdisciplinary curricula at high school, undergraduate and graduate levels. Education materials will be disseminated through a partnership program with Shodor Education Foundation, Inc.Project homepage: http://www.eecs.wsu.edu/~ananth/DataIntensive-Biocomputing/
生物信息学和计算生物学领域正在经历一场不同于任何其他科学计算领域的数据革命。获取数据的实验技术增加了吞吐量,提高了准确性,并降低了成本。数据的优势限制了现有软件工具的可扩展性。为了理解设计数据密集型生物计算算法的复杂性和挑战,该项目正在为蛋白质生物信息学中的两个主要问题开发新方法:i)蛋白质家族和同源簇的识别; ii)从大规模质谱数据中识别肽。前者需要大规模的图分析,后者需要大规模的数据库搜索。该项目正在研究一种多方面的方法,包括为大规模并行机设计空间高效算法,开发算法算法以减少解决方案的时间,评估MapReduce范式作为替代计算模型,以及部署多核架构以实现细粒度并行。项目成果将包括用于大规模蛋白质生物信息学的新算法和开源软件库,包括用于数据密集型生物计算的更通用的库。该项目正在解决蛋白质生物信息学中可扩展方法的关键需求,并将最先进的计算模型和概念从软件和硬件引入主流生物计算。更广泛的影响包括为本科生和研究生创造跨学科研究机会,以及在高中、本科生和研究生层面开设新的跨学科课程。教育材料将通过与Shodor教育基金会的合作计划传播。http://www.eecs.wsu.edu/~ananth/DataIntensive-Biocomputing/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anantharaman Kalyanaraman其他文献

Anantharaman Kalyanaraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anantharaman Kalyanaraman', 18)}}的其他基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316160
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
  • 批准号:
    1919122
  • 财政年份:
    2019
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
SHF: Small: Parallel Algorithms and Architectures Enabling Extreme-scale Graph Analytics for Biocomputing Applications
SHF:小型:并行算法和架构为生物计算应用提供超大规模图形分析
  • 批准号:
    1815467
  • 财政年份:
    2018
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: A Scalable Framework for Visual Exploration and Hypotheses Extraction of Phenomics Data using Topological Analytics
合作研究:ABI 创新:使用拓扑分析进行表型组数据的可视化探索和假设提取的可扩展框架
  • 批准号:
    1661348
  • 财政年份:
    2017
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Student Travel Support: International Workshop on Big Data in Life Sciences, Atlanta, GA, September 9, 2015
学生旅行支持:生命科学大数据国际研讨会,佐治亚州亚特兰大,2015 年 9 月 9 日
  • 批准号:
    1550931
  • 财政年份:
    2015
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
  • 批准号:
    2327013
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
CSR: Small: Cache-Coherent Accelerators for Efficient Persistent Memory Programming
CSR:小型:用于高效持久内存编程的缓存一致性加速器
  • 批准号:
    2245999
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
CISE-ANR: RI: Small: Numerically efficient reinforcement learning for constrained systems with super-linear convergence (NERL)
CISE-ANR:RI:小:具有超线性收敛 (NERL) 的约束系统的数值高效强化学习
  • 批准号:
    2315396
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
  • 批准号:
    2315725
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Communication-Efficient, Fault-Tolerant Private Information Retrieval over Erasure Coded Storage
SaTC:核心:小型:通过纠删码存储进行通信高效、容错的私人信息检索
  • 批准号:
    2326312
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了