Transition to Algebra: A Habits of Mind Approach

向代数过渡:思维习惯方法

基本信息

  • 批准号:
    0917958
  • 负责人:
  • 金额:
    $ 349.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DRL: DR K-12PI: GoldenbergAbstractThis project, Transition to Algebra: A Habits of Mind Approach, led by professionals in the mathematics group at the Education Development Center, is developing a collection of modules introducing key ideas of algebra in ways that complement the core curriculum when a school is offering double period algebra. The key habit of mind being developed is abstracting from calculation. Modules deal with the transition from arithmetic to algebra, rational numbers, expressions/equations/word problems, graphs and equations, geometry of algebra, and proportional reasoning. The target population is students in urban high poverty schools with a significant ELL sector.The proposers' hypothesis is that instructional materials focused on developing conceptual understanding and mathematical habits of mind can complement traditional skill-focused algebra instruction in ways that are engaging to students. Furthermore, they argue that using materials with such meta-cognitive aims will actually strengthen the learning of core algebraic concepts and skills. The supplementary algebra modules are being developed by a form of design research. Concurrent with development and field test of the student and teacher materials, the investigators are addressing four research questions. The first two questions are focused on the effects of the intervention in developing student habits of mind and in improving their competence and confidence in algebra. The other two address the feasibility of implementing the new approach to double-period algebra in a variety of school settings. A small-scale quasi-experimental field test is being used to give preliminary estimates of the effectiveness of the instructional materials and the implementation guidelines. The core purpose of these research activities is to inform development and refinement of the student and teacher instructional materials.Products of this development effort will be a valuable resource to schools as they devise strategies for helping all students master the essentials of elementary algebra.
DRL:DR K-12PI:Goldenberg摘要这个项目,过渡到代数:思维习惯方法,由教育发展中心数学组的专业人员领导,正在开发一系列模块,介绍代数的关键概念,以补充学校提供双周期代数的核心课程。培养思维的关键习惯是从计算中抽象出来。模块处理从算术到代数的转换、有理数、表达式/方程式/应用题、图形和方程式、代数几何和比例推理。研究的目标人群是英语学习领域较多的城市高中的学生。提出者的假设是,注重发展概念理解和数学思维习惯的教学材料能够以吸引学生的方式补充传统的以技能为中心的代数教学。此外,他们认为,使用具有这种元认知目的的材料实际上会加强核心代数概念和技能的学习。补充代数模块正在以一种设计研究的形式开发。在开发和实地测试学生和教师材料的同时,调查人员正在解决四个研究问题。前两个问题集中在干预在培养学生思维习惯和提高他们在代数方面的能力和信心方面的效果。另外两个讨论了在不同的学校环境中实施双周期代数新方法的可行性。目前正在进行小规模的准实验实地测试,以初步评估教学材料和实施指南的有效性。这些研究活动的核心目的是为学生和教师的教学材料的发展和完善提供信息。这种发展努力的成果将是学校制定策略帮助所有学生掌握初等代数的基本要素时的宝贵资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

E. Paul Goldenberg其他文献

Students' understanding of the notion of function in dynamic geometry environments
  • DOI:
    10.1007/bf00182618
  • 发表时间:
    2013-11-07
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Orit Hazzan;E. Paul Goldenberg
  • 通讯作者:
    E. Paul Goldenberg
An Inefficient Route to the Cosine Law
  • DOI:
    10.1023/a:1009709803488
  • 发表时间:
    1998-05-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    E. Paul Goldenberg
  • 通讯作者:
    E. Paul Goldenberg
Getting Euler's Line to Relax
  • DOI:
    10.1023/a:1017907209271
  • 发表时间:
    2001-05-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    E. Paul Goldenberg
  • 通讯作者:
    E. Paul Goldenberg
Principles, Art, and Craft In Curriculum Design: The Case of Connected Geometry
  • DOI:
    10.1023/a:1009878903774
  • 发表时间:
    1999-05-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    E. Paul Goldenberg
  • 通讯作者:
    E. Paul Goldenberg

E. Paul Goldenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('E. Paul Goldenberg', 18)}}的其他基金

Mathematics through Programming in the Elementary Grades
小学数学通过编程
  • 批准号:
    1934161
  • 财政年份:
    2019
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
Think Math + C: Integrating Programming Into a Comprehensive K-5 Mathematics Curriculum
Think Math C:将编程融入综合 K-5 数学课程
  • 批准号:
    1741792
  • 财政年份:
    2017
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
Bringing a Rigorous Computer Science Principles Course to the Largest School System in the United States
将严格的计算机科学原理课程引入美国最大的学校系统
  • 批准号:
    1441075
  • 财政年份:
    2015
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
iPuzzle: Transforming Mathematics Learning Through Social Puzzling
iPuzzle:通过社交谜题改变数学学习
  • 批准号:
    1135173
  • 财政年份:
    2012
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
Implementing the Mathematical Practice Standards: Enhancing Teachers' Ability to Support the Common Core State Standards
实施数学实践标准:增强教师支持共同核心国家标准的能力
  • 批准号:
    1119163
  • 财政年份:
    2011
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
Learning By Doing: A Mathematics Curriculum for Elementary School Children and Their Teachers
边做边学:小学生及其老师的数学课程
  • 批准号:
    0099093
  • 财政年份:
    2001
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
SGER: Finding Principles For K-6 Curriculum Materials that Promote Rather than Require Professional Development
SGER:寻找促进而非要求专业发展的 K-6 课程材料原则
  • 批准号:
    0000368
  • 财政年份:
    2000
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
Problems With A Point: A Web-based Problem Bank for Teachers
一点问题:基于网络的教师问题库
  • 批准号:
    9818735
  • 财政年份:
    1999
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
Connecting With Mathematics: The Ideas Behind the Techniques
与数学联系:技术背后的想法
  • 批准号:
    9731244
  • 财政年份:
    1998
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
An Espistemology of Dynamic Geometry
动态几何认识论
  • 批准号:
    9453864
  • 财政年份:
    1995
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 349.61万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了