BRIGE: Architectures and Circuits for Simultaneous Spectrum Sensing and Data Reception in Cognitive Radio
BRIGE:认知无线电中同步频谱感知和数据接收的架构和电路
基本信息
- 批准号:0926833
- 负责人:
- 金额:$ 16.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In certain emergency situations the existing communication infrastructure may be damaged or simply overloaded. Through the use of cognitive radio networks, emergency personnel would maintain the ability to communicate, share data, and coordinate large numbers of people. The PI's long term research goals are to make significant contributions in the area of realizing a viable, fully integrated cognitive radio that is capable of operating over the frequency range of 1 - 10 GHz. A critical component of such a system is the spectrum sensing front. A major limitation in current spectrum sensing front ends is their limited range of operating frequencies (typically less than 1 GHz) and large sensing overhead. This proposal discusses research aimed at a spectrum sensing front end that is capable of performing simultaneous spectrum sensing and data reception while operating over the frequency range of 1 - 10 GHz. This project will be divided into the following four tasks: development of a simultaneous spectrum sensing and data reception algorithm, development of a wideband spectrum sensing architecture, development of narrowband, tunable circuits for the chosen architecture and validation and demonstration The intellectual merit of the proposed research is significant and will provide new algorithms and architectures capable of reducing the sensing overhead to near zero while extending the possible operating range by an order of magnitude. The circuits that will be developed will not only benefit cognitive radio applications, but many other present and future wireless communication devices, for instance multi-standard radio architectures such as software defined radio, cell phones, and wireless networking devices. Multi-standard devices are becoming increasingly important to industry due to the constant push to increase functionality and decrease cost of current mobile devices.The broader impacts of this project will include increasing the participation of underrepresented groups, enhancing education and research knowledge, and providing a benefit to society. A primary goal of the BRIGE program is to increase the participation of underrepresented groups in Science and Engineering. The graduate student that will be supported by this award is an African American Ph.D. student by the name of Jeremy Brown. Jeremy has a keen interest in analog circuit design and has taken numerous courses on this subject, thus qualifying him to work on this project.The PI is currently teaching a senior/graduate level course on radio-frequency integrated circuit design and is in the process of proposing a graduate-level extension to this course focusing on more advanced topics in wireless system design. The results of this research will be directly integrated into the curriculum of both classes, allowing many different students to benefit from state-of-the-art curriculum.There are also many different social impacts of the proposed research. The development of a wideband spectrum sensing front end is but the first step towards the PI's longer term goals of realizing a fully integrated cognitive radio that is capable of operating over the 1 - 10 GHz band. This type of radio, in turn, will have many revolutionary applications. For example, as stated above, emergency responders can use cognitive radio networks to increase the communication efficiency and the overall safety of the emergency responders. These same benefits can apply to military applications as well. Further, by fully integrating the radio, they will become less expensive and see wide-spread deployment, similar to what has been seen in cell phones.
在某些紧急情况下,现有的通信基础设施可能会遭到破坏或超载。通过使用认知无线电网络,应急人员将保持沟通、共享数据和协调大量人员的能力。PI的长期研究目标是在实现可行的、完全集成的认知无线电领域做出重大贡献,该无线电能够在1 - 10 GHz的频率范围内工作。这种系统的一个关键组成部分是频谱传感前端。当前频谱传感前端的一个主要限制是其有限的工作频率范围(通常小于1ghz)和大的传感开销。本提案讨论了一种频谱传感前端的研究,该前端能够在1 - 10 GHz的频率范围内同时进行频谱传感和数据接收。本项目将分为以下四个任务:开发同时的频谱传感和数据接收算法,开发宽带频谱传感架构,开发窄带可调谐电路,用于所选架构和验证和演示。所提出的研究的智力价值是显著的,并将提供新的算法和架构,能够将传感开销降低到接近零,同时将可能的操作范围扩大一个数量级。将开发的电路不仅有利于认知无线电应用,而且有利于许多其他当前和未来的无线通信设备,例如多标准无线电体系结构,如软件定义无线电、移动电话和无线网络设备。由于当前移动设备不断提高功能和降低成本,多标准设备对工业变得越来越重要。该项目的更广泛影响将包括增加代表性不足的群体的参与,加强教育和研究知识,并为社会带来利益。bridge计划的一个主要目标是增加未被充分代表的群体在科学和工程领域的参与。获得这个奖项的研究生是一名非裔美国博士生,名叫杰里米·布朗。Jeremy对模拟电路设计有着浓厚的兴趣,并参加了许多这方面的课程,因此他有资格参与这个项目。PI目前正在教授一门射频集成电路设计的高级/研究生课程,并正在提出一门研究生课程的扩展课程,重点关注无线系统设计的更高级主题。这项研究的结果将直接整合到两个班级的课程中,使许多不同的学生受益于最先进的课程。拟议的研究也有许多不同的社会影响。宽带频谱传感前端的开发只是PI实现能够在1 - 10ghz频段上工作的完全集成认知无线电的长期目标的第一步。这种类型的无线电,反过来,将有许多革命性的应用。例如,如上所述,应急响应人员可以使用认知无线电网络来提高应急响应人员的通信效率和整体安全性。这些好处同样适用于军事应用。此外,通过完全集成无线电,它们将变得更便宜,并看到广泛的部署,类似于在手机中看到的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Neihart其他文献
Nathan Neihart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Neihart', 18)}}的其他基金
A New Design Paradigm for Switch-Mode Power Amplifiers Supporting Concurrent Multi-Band Wireless Communication
支持并发多频段无线通信的开关模式功率放大器的新设计范式
- 批准号:
1509001 - 财政年份:2015
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
相似海外基金
SHF: Small: Energy and Computational Efficient Deep Generative AI Models via Emerging Devices, Circuits, and Architectures
SHF:小型:通过新兴设备、电路和架构实现能源和计算高效的深度生成人工智能模型
- 批准号:
2219753 - 财政年份:2022
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Architectures and Integrated Circuits for Power-Efficient Communication Systems and Beyond
适用于高能效通信系统及其他系统的架构和集成电路
- 批准号:
RGPIN-2017-06240 - 财政年份:2021
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual
Network-on-Chip Architectures in Hardware-Accelerated Application-Specific Integrated Circuits
硬件加速专用集成电路中的片上网络架构
- 批准号:
566266-2021 - 财政年份:2021
- 资助金额:
$ 16.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Design Automation of Integrated Power Electronics: From Architectures to Circuits
职业:集成电力电子设计自动化:从架构到电路
- 批准号:
1943271 - 财政年份:2020
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
FET: SHF: Small: Collaborative: Advanced Circuits, Architectures and Design Automation Technologies for Energy-efficient Single Flux Quantum Logic
FET:SHF:小型:协作:用于节能单通量量子逻辑的先进电路、架构和设计自动化技术
- 批准号:
2008514 - 财政年份:2020
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Architectures and Integrated Circuits for Power-Efficient Communication Systems and Beyond
适用于高能效通信系统及其他系统的架构和集成电路
- 批准号:
RGPIN-2017-06240 - 财政年份:2020
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual
FET: SHF: Small: Collaborative: Advanced Circuits, Architectures and Design Automation Technologies for Energy-efficient Single Flux Quantum Logic
FET:SHF:小型:协作:用于节能单通量量子逻辑的先进电路、架构和设计自动化技术
- 批准号:
2009064 - 财政年份:2020
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
NeuroTest: Testing Solutions for Neuromorphic Circuits and Architectures
NeuroTest:神经形态电路和架构的测试解决方案
- 批准号:
429238884 - 财政年份:2019
- 资助金额:
$ 16.6万 - 项目类别:
Research Grants
Architectures and Integrated Circuits for Power-Efficient Communication Systems and Beyond
适用于高能效通信系统及其他系统的架构和集成电路
- 批准号:
RGPIN-2017-06240 - 财政年份:2019
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual
Architectures and Integrated Circuits for Power-Efficient Communication Systems and Beyond
适用于高能效通信系统及其他系统的架构和集成电路
- 批准号:
RGPIN-2017-06240 - 财政年份:2018
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual