EFRI-BSBA: Nanoactuation and Sensing of Neural Function for Engineering Future Biomimetic Retinal Implants and Therapies

EFRI-BSBA:神经功能的纳米驱动和传感,用于工程未来仿生视网膜植入物和治疗

基本信息

  • 批准号:
    0938072
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT for EFRI-BSBA: Nanoactuation and Sensing of Neural Function for Engineering Future Biomimetic Retinal Implants and Therapies PI: Laxman Saggere, Mechanical and Industrial Engineering, University of Illinois at Chicago (UIC) Intellectual Merit Retinal degenerative diseases such as age-related macular degeneration (AMD) affect over 10 million people in the US alone, causing a significant decline in the quality of their lives. Currently available therapies are at best only somewhat effective. Over the last two decades, several groups around the world have been pursuing the development of a retinal prosthesis, with the goal of providing a restorative aid for patients affected by retinal diseases due to photoreceptor degeneration. Nearly all of the current retinal prosthesis developments rely on the principle of stimulating the retina electrically, which is conceptually simple; however, a number of challenges still remain to be overcome in this approach and fully functional, long-lasting devices are not on the immediate horizon. On the other hand, a widely occurring mechanism of intercellular communication in the normally functioning retina as well as elsewhere in the nervous system is the chemical synapse. Inspired by the nature's complex mechanism of transducing visual information into chemical signals via the chemical synapse, the applicants envision an unconventional, but rational, approach to restore the lost functionality of photoreceptors: a light modulated chemical interface at the retina. Toward this long-term vision of a chemically based retinal implant, the proposed project seeks to understand how the retina and retinal neurons respond physiologically to controlled focal presentation of chemical stimuli in vitro so that a general engineering framework for developing a prosthetic system based on the functionality of the diseased neurons can be further explored. There exist two distinct classes of chemicals, viz. native neurotransmitters and tethered synthetic biomolecules, that are promising as transmitters, and each offers certain unique advantages. Therefore, in this project, they propose to investigate the efficacy and feasibility of eliciting physiological responses of retinal neurons when focally stimulated by both types of chemicals delivered by means of specially engineered micro- and nanoscale delivery devices. This novel approach is fundamentally different from the more common approach of electrically stimulating retinal neurons, and distinct from chemical-based strategies recently proposed by other groups. Thus, the main intellectual merit of this proposal lies in generating new scientific and technical knowledge that could be transformative to the development of a biomimetic retinal implant to restore lost or damaged retinal function. Ultimately, if successful, this research could lead to a new paradigm and breakthroughs in retinal prostheses. Broader Impacts The proposed project, if successful, could break new ground in the area of visual prosthesis and someday help provide vision perception to millions of people affected by retinal degenerative diseases. The devastating complications associated with vision loss, and the progressive aging of the US population with a corresponding increased incidence of AMD in otherwise healthy individuals, emphasize an urgent national need to develop effective prostheses and therapies for retinal degenerative diseases. Beyond the impact on vision health, this research could also lead to other novel drug delivery strategies and biomimetic therapies for treating a variety of neurological disorders such as Parkinson's. The interdisciplinary collaboration of researchers with a diverse expertise in this project provides a unique opportunity and framework for interdisciplinary education and training of secondary school through postdoctoral students at the frontiers of engineering, neuroscience, and medicine. Four graduate students and one postdoctoral student will undertake interdisciplinary research addressing the tasks involved in this project in the investigators' labs across three different colleges at UIC. Several educational activities integrated with the proposed research including undergraduate research and outreach will be implemented.
EFRI-BSBA摘要:纳米致动和传感神经功能工程未来仿生视网膜植入物和治疗PI:Laxman Saggere,机械和工业工程,伊利诺伊大学芝加哥分校(UIC)智力优点视网膜退行性疾病,如年龄相关性黄斑变性(AMD)影响超过1000万人,仅在美国,导致他们的生活质量显着下降。目前可用的疗法充其量只能起到一定的效果。在过去的二十年里,世界各地的几个小组一直在追求视网膜假体的发展,其目标是为受感光细胞变性引起的视网膜疾病影响的患者提供恢复性帮助。目前几乎所有的视网膜假体开发都依赖于电刺激视网膜的原理,这在概念上很简单;然而,在这种方法中仍有许多挑战有待克服,功能齐全,持久的设备还没有出现在眼前。另一方面,在正常功能的视网膜以及神经系统的其他地方,广泛存在的细胞间通讯机制是化学突触。受自然界通过化学突触将视觉信息转换为化学信号的复杂机制的启发,申请人设想了一种非常规但合理的方法来恢复光感受器的丧失的功能:视网膜处的光调制化学界面。为了实现基于化学的视网膜植入物的长期愿景,拟议的项目旨在了解视网膜和视网膜神经元如何在生理上对体外化学刺激的受控局部呈现做出反应,以便进一步探索基于患病神经元功能开发假体系统的一般工程框架。存在两类不同的化学物质,即天然神经递质和拴系的合成生物分子,它们作为递质是有前途的,并且每一种都提供了某些独特的优势。因此,在这个项目中,他们建议研究当通过专门设计的微米和纳米级递送装置递送的两种类型的化学物质局部刺激时,引发视网膜神经元生理反应的有效性和可行性。这种新的方法从根本上不同于更常见的电刺激视网膜神经元的方法,也不同于其他小组最近提出的基于化学的策略。因此,该提案的主要智力价值在于产生新的科学和技术知识,这些知识可能对仿生视网膜植入物的开发具有变革性,以恢复丢失或受损的视网膜功能。最终,如果成功的话,这项研究可能会导致视网膜假体的新范式和突破。更广泛的影响拟议中的项目,如果成功,可以在视觉假体领域开辟新的天地,并有一天帮助提供视觉感知数百万人受视网膜退行性疾病。与视力丧失相关的毁灭性并发症,以及美国人口的逐渐老龄化,以及在其他健康个体中AMD的发病率相应增加,强调了国家迫切需要开发有效的视网膜退行性疾病的假体和疗法。除了对视力健康的影响外,这项研究还可能导致其他新的药物输送策略和仿生疗法,用于治疗帕金森氏症等各种神经系统疾病。在这个项目中,具有不同专业知识的研究人员的跨学科合作为跨学科教育和中学培训提供了独特的机会和框架,通过工程,神经科学和医学前沿的博士后学生。四名研究生和一名博士后学生将在UIC三个不同学院的研究人员实验室进行跨学科研究,以解决该项目所涉及的任务。将实施与拟议研究相结合的几项教育活动,包括本科生研究和推广活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laxman Saggere其他文献

Laxman Saggere的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laxman Saggere', 18)}}的其他基金

Chipscale Multifinger Coordinated Manipulation Methodology for Nanomanufacturing
用于纳米制造的芯片级多指协调操纵方法
  • 批准号:
    0800741
  • 财政年份:
    2008
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: A Biomimetic Microsystems Technology towards a Novel Retinal Prosthesis
职业:仿生微系统技术开发新型视网膜假体
  • 批准号:
    0449352
  • 财政年份:
    2005
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
SGER: Development of a Light-Driven Microactuator for a Retinal Prosthesis Application
SGER:开发用于视网膜假体应用的光驱动微执行器
  • 批准号:
    0439464
  • 财政年份:
    2004
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Micro Scanning Vibrometer System
MRI:获取微型扫描振动计系统
  • 批准号:
    0321223
  • 财政年份:
    2003
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

US-Japan Workshop on Bioinspired Sensing and Bioinspired Actuation (BSBA) Technologies; Hawaii; March 18 and 19, 2011
美日仿生传感和仿生驱动 (BSBA) 技术研讨会;
  • 批准号:
    1112579
  • 财政年份:
    2011
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BSBA: Complex microsystem networks inspired by internal insect physiology
EFRI BSBA:受昆虫内部生理学启发的复杂微系统网络
  • 批准号:
    0938047
  • 财政年份:
    2010
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Biology Inspired Intelligent Micro Optical Imaging Systems
EFRI-BSBA:受生物学启发的智能微光学成像系统
  • 批准号:
    0937847
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Learning from Plants -- Biologically-Inspired Multi-Functional Adaptive Structural Systems
EFRI-BSBA:向植物学习——受生物启发的多功能自适应结构系统
  • 批准号:
    0937323
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA Integration of Dynamic Sensing and Actuating of Neural Microcircuits
EFRI-BSBA 动态传感与神经微电路驱动的集成
  • 批准号:
    0937848
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Engineering Synthetic Mimics of DNA-Protein Recognition Systems
EFRI-BSBA:DNA-蛋白质识别系统的工程合成模拟
  • 批准号:
    0938019
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI- BSBA: Novel Microsystems for Manipulation and Analysis of Immune Cells
EFRI- BSBA:用于免疫细胞操作和分析的新型微系统
  • 批准号:
    0937997
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Second Window
EFRI-BSBA:第二个窗口
  • 批准号:
    0937710
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Photonic Technique for Sensing and Understanding Subcellular Structures at Nanoscale
EFRI-BSBA:用于传感和理解纳米级亚细胞结构的光子技术
  • 批准号:
    0937987
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Multifunctional Materials and Devices for Distributed Actuation and Sensing
EFRI-BSBA:用于分布式驱动和传感的多功能材料和设备
  • 批准号:
    0937985
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了