CAREER: Combinatorial Online Learning and its Applications

职业:组合在线学习及其应用

基本信息

  • 批准号:
    0953274
  • 负责人:
  • 金额:
    $ 49.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

Several important problems in machine learning, such as maximumaposteriori (MAP) inference in graphical models, are inherently combinatorial. While extensive research has been devoted to designing approximation algorithms for such problems, existing algorithms do not scale well to large problems. This project focuses on leveraging ideas from online learning with expert advice to develop a novel family of online learning algorithms for combinatorial optimization problems. Algorithms for combinatorial online learning are efficient and simple to analyze in order to establish guarantees. Unlike existing literature on approximation algorithms for combinatorial problems which rely on suitable real relaxations of the original problem, combinatorial online learning algorithms never use relaxations; they work directly with binary/integer solutions and have global approximation guarantees. The project investigates generalizations of the framework to solve online and batch binary quadratic programming problems, yielding approximation algorithms for a variety of combinatorial problems, including NP-complete problems, and MAP inference in directed and undirected graphical models. The project considers three important real life applications: portfolio selection for effectively investing in the stock market, automating surgical pathology by expediting disease detection in tissue images, and climate change detection for discovering abrupt climate changes from spatiotemporal climate data. The project is expected to be transformative, especially in the context of surgical pathology and climate change detection, yielding significant long term societal benefits. The research results will be disseminated to the community through research papers, tutorials, open source software, and outreach activities using games based on mock stock markets.
机器学习中的几个重要问题,如图模型中的最大后验(MAP)推理,本质上是组合的。虽然广泛的研究已经致力于设计近似算法,这样的问题,现有的算法不能很好地扩展到大的问题。这个项目的重点是利用在线学习的想法与专家的意见,开发一个新的家庭的在线学习算法的组合优化问题。组合在线学习的算法是有效的和简单的分析,以建立保证。与现有的文献中的组合问题的近似算法依赖于适当的真实的松弛的原始问题,组合在线学习算法从来没有使用松弛,他们直接与二进制/整数的解决方案,并具有全局近似保证。 该项目研究了该框架的泛化,以解决在线和批处理二进制二次规划问题,产生各种组合问题的近似算法,包括NP完全问题,以及有向和无向图形模型中的MAP推理。该项目考虑了三个重要的真实的生活应用:有效投资于股票市场的投资组合选择,通过加快组织图像中的疾病检测来自动化手术病理学,以及从时空气候数据中发现突然气候变化的气候变化检测。该项目预计将具有变革性,特别是在外科病理学和气候变化检测方面,将产生重大的长期社会效益。研究成果将通过研究论文、教程、开源软件和利用模拟股票市场游戏开展的外联活动向社区传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arindam Banerjee其他文献

Passive and reactive scalar measurements in a transient high-Schmidt-number Rayleigh–Taylor mixing layer
  • DOI:
    10.1007/s00348-012-1328-y
  • 发表时间:
    2012-06-05
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Arindam Banerjee;Lakshmi Ayyappa Raghu Mutnuri
  • 通讯作者:
    Lakshmi Ayyappa Raghu Mutnuri
Integral Closure of Powers of Edge Ideals of Weighted Oriented Graphs
  • DOI:
    10.1007/s40306-024-00558-0
  • 发表时间:
    2024-10-17
  • 期刊:
  • 影响因子:
    0.300
  • 作者:
    Arindam Banerjee;Kanoy Kumar Das;Sirajul Haque
  • 通讯作者:
    Sirajul Haque
AmbientFlow: Invertible generative models from incomplete, noisy measurements
AmbientFlow:来自不完整、噪声测量的可逆生成模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Varun A. Kelkar;Rucha Deshpande;Arindam Banerjee;M. Anastasio
  • 通讯作者:
    M. Anastasio
Technology acceptance model and customer engagement: mediating role of customer satisfaction
技术接受模型和客户参与:客户满意度的中介作用
Private equity in developing nations
  • DOI:
    10.1057/jam.2008.12
  • 发表时间:
    2008-06-23
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Arindam Banerjee
  • 通讯作者:
    Arindam Banerjee

Arindam Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arindam Banerjee', 18)}}的其他基金

NRT - Stakeholder Engaged Equitable Decarbonized Energy Futures
NRT - 利益相关者参与的公平脱碳能源期货
  • 批准号:
    2244162
  • 财政年份:
    2023
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    2130835
  • 财政年份:
    2021
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
  • 批准号:
    2131335
  • 财政年份:
    2021
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
PFI-TT: Advancing the Technology Readiness of Pylon Fairings for Tidal Turbines
PFI-TT:推进潮汐涡轮机塔架整流罩的技术准备
  • 批准号:
    1919184
  • 财政年份:
    2019
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
  • 批准号:
    1908104
  • 财政年份:
    2019
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    1934634
  • 财政年份:
    2019
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
Towards an improved understanding of tidal turbine dynamics in a turbulent marine environment
提高对湍流海洋环境中潮汐涡轮机动力学的理解
  • 批准号:
    1706358
  • 财政年份:
    2017
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Bayesian Modeling and Inference for Quantifying Terrestrial Ecosystem Functions
III:媒介:协作研究:量化陆地生态系统功能的贝叶斯建模和推理
  • 批准号:
    1563950
  • 财政年份:
    2016
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
CAREER: Transition to Turbulence and Mixing for Rayleigh Taylor Instability with Acceleration Reversal
职业生涯:加速反转的瑞利泰勒不稳定性过渡到湍流和混合
  • 批准号:
    1453056
  • 财政年份:
    2015
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1447566
  • 财政年份:
    2014
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant

相似海外基金

Combinatorial Biosynthetic Pathway Engineering
组合生物合成途径工程
  • 批准号:
    EP/X039587/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
  • 批准号:
    23K26368
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 49.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了