A Novel Adaptive Transactional Virtual Reality-based Assistive Technology for Autism Intervention

一种用于自闭症干预的新型自适应交易虚拟现实辅助技术

基本信息

  • 批准号:
    0967170
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

PI: Sarkar N. & Warren, Z.Proposal Number: 0967170 This interdisciplinary project proposes fundamental, transformative technology improvements to assist children with Autism Spectrum Disorder (ASD). The objective is to develop a novel affect and attention sensitive virtual reality -based assistive technology for ASD intervention. Social communication and social information processing are thought to represent core domains of impairment in children with ASD. The proposed research will develop technologies capable of targeting individual deficit by flexibly and adaptively responding to subtle affective and attentive changes in individuals with ASD during social paradigms and create VR-based ASD intervention technology that can present itself as a realistic and powerful intervention platform. The individual, familial, and societal impact associated with ASD is enormous. Therefore, an important direction for research on ASD is the identification and development of technology that can make application of effective intensive treatment more accessible and cost effective. To address this need, this project will combine VR-based technology with affective computing using physiological signals and attention inference through eye gaze measurement to develop a new paradigm for autism intervention that will appreciably transform the ability to understand and tailor interventions to the specific vulnerabilities of children with ASD. The project will develop an assistive technology that will result in an affect and attention sensitive system for detecting, adaptively responding to, and optimizing levels of social interaction for children with ASD during VR interactions. The system is scalable and adaptable to a broad range of intervention strategies, providing flexibility in design and implementation.Intellectual Merit: The proposed research advances the design and authoring of adaptive virtual environments for use with a challenged population of children. It has the potential to significantly contribute new computational methods for affective computing, particularly affective computing mediated by physiologic signal processing. Primarily, the project will develop new framework to design virtual environments for social interaction that intelligently combine both affective and attentive information into adaptive and controllable response systems. The proposed activity also represents a new technology that will fundamentally advance the engineering knowledge of human-computer interactions as well as the understanding of the mechanisms that underlie the presumed core social impairments, and associated interventions, with ASD.Broader Impacts: Emerging research suggests as many as 1 in 150 children are diagnosed with an autism spectrum disorder and ASD related care costs the nation over $35 billion annually. The low-cost and highly deployable technologies developed in this proposal could have significant impact on this population. They may also create a completely new technological intervention methodology for children with ASD. This research may further a technology that can enable all core components of effective intervention at only a fraction of the cost of typical intervention programs, while at the same time increasing the ability of the intervention provider to systematically control and promote intervention related skills targeting individual deficit. The educational activities will train and mentor undergraduate and graduate students in the proposed research, and develop one module in a one-credit seminar course targeted to engineering freshman class. The outreach activities will include offering research opportunities to high school students, especially among groups currently underrepresented in STEM (science, technology, engineering, and mathematics) fields, and providing high school teachers with research experience during summer in the design and research evaluation of advanced technologies for autism intervention. Outreach objectives will also involve usability testing to elicit feedback from behavioral professionals and children with ASD. This project represents an opportunity to leverage a unique collaboration that brings cutting-edge engineering, psychology, and clinical knowledge to the development of a pragmatic and efficacious assistive intervention technology addressing core symptoms of ASD.
PI:Sarkar N. &Warren,Z.提案编号:0967170 这个跨学科的项目提出了基本的,变革性的技术改进,以帮助自闭症谱系障碍(ASD)的儿童。目的是开发一种新的情感和注意力敏感的基于虚拟现实的辅助技术,用于ASD干预。社会沟通和社会信息处理被认为是ASD儿童受损的核心领域。拟议的研究将开发能够通过灵活和自适应地响应ASD个体在社会范式中的微妙情感和注意力变化来针对个体缺陷的技术,并创建基于VR的ASD干预技术,该技术可以呈现为现实和强大的干预平台。 与ASD相关的个人,家庭和社会影响是巨大的。因此,ASD研究的一个重要方向是识别和开发能够使有效强化治疗的应用更容易获得且更具成本效益的技术。为了满足这一需求,该项目将结合联合收割机基于VR的技术与情感计算使用生理信号和注意力推理通过眼睛凝视测量开发一个新的自闭症干预范例,将明显改变理解和定制干预自闭症儿童的特定脆弱性的能力。该项目将开发一种辅助技术,该技术将产生一种影响和注意力敏感系统,用于在VR互动期间检测、自适应响应和优化ASD儿童的社交互动水平。该系统是可扩展的,适应范围广泛的干预策略,提供灵活的设计和implementation.Intellectual Merit:拟议的研究推进自适应虚拟环境的设计和创作与儿童人口的挑战。它有可能显着贡献新的计算方法的情感计算,特别是情感计算介导的生理信号处理。首先,该项目将开发新的框架来设计用于社交互动的虚拟环境,智能地将情感和注意力信息联合收割机结合到自适应和可控的响应系统中。拟议的活动也代表了一项新技术,将从根本上推进人机交互的工程知识,以及对假定的核心社会障碍和相关干预措施的机制的理解,与ASD。更广泛的影响:新的研究表明,150名儿童中就有1名被诊断患有自闭症谱系障碍,自闭症谱系障碍相关的护理费用超过100万美元。每年350亿。该提案中开发的低成本和高度可部署的技术可能对这一群体产生重大影响。他们还可能为ASD儿童创造一种全新的技术干预方法。这项研究可能会进一步的技术,可以使所有的核心组成部分,有效的干预,只有一小部分的成本典型的干预计划,而在同一时间增加的干预提供者的能力,系统地控制和促进干预相关的技能,针对个人的赤字。教育活动将在拟议的研究中培训和指导本科生和研究生,并在针对工程新生的单学分研讨会课程中开发一个模块。外展活动将包括为高中生提供研究机会,特别是目前在STEM(科学,技术,工程和数学)领域代表性不足的群体,并在夏季为高中教师提供自闭症干预先进技术的设计和研究评估方面的研究经验。推广目标还将涉及可用性测试,以从行为专业人员和自闭症儿童那里获得反馈。该项目代表了一个利用独特合作的机会,该合作将尖端的工程学,心理学和临床知识引入到解决ASD核心症状的实用有效的辅助干预技术的开发中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nilanjan Sarkar其他文献

Stress Detection of Autistic Adults during Simulated Job Interviews using a Novel Physiological Dataset and Machine Learning
使用新颖的生理数据集和机器学习在模拟工作面试期间检测自闭症成人的压力
  • DOI:
    10.1145/3639709
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Miroslava Migovich;Deeksha Adiani;Michael Breen;A. Swanson;Timothy J. Vogus;Nilanjan Sarkar
  • 通讯作者:
    Nilanjan Sarkar
An Iterative Participatory Design Approach to Develop Collaborative Augmented Reality Activities for Older Adults in Long-Term Care Facilities
一种迭代参与式设计方法,为长期护理机构中的老年人开发协作增强现实活动
Analysis of order of redundancy relation for robust actuator fault detection
  • DOI:
    10.1016/j.conengprac.2009.02.014
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bibhrajit Halder;Nilanjan Sarkar
  • 通讯作者:
    Nilanjan Sarkar
Control of Mechanical Systems with Rolling Constraints : Application to Dynamic Control of Mobile Robots MS-CIS-92-44 GRASP LAB 320
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nilanjan Sarkar
  • 通讯作者:
    Nilanjan Sarkar
Poster 8 Sensor-enabled Radio Frequency Identification Tags for Remotely Monitoring Everyday Arm Activity: Sensitivity and Specificity
  • DOI:
    10.1016/j.apmr.2011.07.030
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joydip Barman;Gitendra Uswatte;Touraj Ghaffari;Nilanjan Sarkar;Brad Sokal;Ezekiel Byrom;Eva Trinh;Christopher Varghese;Michael Brewer;Alan Shih
  • 通讯作者:
    Alan Shih

Nilanjan Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nilanjan Sarkar', 18)}}的其他基金

I-Corps: Integrating Complex Augmented Reality Systems in Nursing Education
I-Corps:将复杂的增强现实系统集成到护理教育中
  • 批准号:
    2349446
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SCC-CIVIC-FA Track B: Community Informed AI-Based Vehicle Technology Simulator with Behavioral Strategies to Advance Neurodiverse Independence and Employment
SCC-CIVIC-FA 轨道 B:社区知情的基于人工智能的车辆技术模拟器,具有促进神经多样性独立和就业的行为策略
  • 批准号:
    2322029
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Community Informed AI-Based System for Driver Training to Advance Neurodiverse Independence and Employment
SCC-CIVIC-PG 轨道 B:社区知情的基于人工智能的驾驶员培训系统,以促进神经多样化的独立和就业
  • 批准号:
    2228370
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SCC-IRG Track 1 Reducing Loneliness for Long Term Care Older Adults through Collaborative Augmented Reality
SCC-IRG 第 1 轨道通过协作增强现实减少长期护理老年人的孤独感
  • 批准号:
    2225890
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SCH: Enhanced detection of impending problem behavior in people with intellectual and developmental disabilities through multimodal sensing and machine learning
SCH:通过多模态传感和机器学习增强对智力和发育障碍人士即将出现的问题行为的检测
  • 批准号:
    2124002
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I(RAISE): Empowering Neurodiverse Populations for Employment through Inclusion AI and Innovation Science
融合加速器第一阶段(RAISE):通过包容性人工智能和创新科学为神经多样化人群提供就业机会
  • 批准号:
    1936970
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Individualized Adaptive Robot-Mediated Intervention Architecture for Autism
个体化自适应机器人介导的自闭症干预架构
  • 批准号:
    1264462
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Student Travel Support for 2012 IEEE International Conference on Robotics and Automation
2012 年 IEEE 国际机器人与自动化会议学生旅行支持
  • 批准号:
    1216519
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SGER: An Affect-Sensitive, Anticipatory Control Framework for Human-Robot Cooperation
SGER:用于人机合作的情感敏感、预期控制框架
  • 批准号:
    0107775
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
  • 批准号:
    24K17589
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了