Individualized Adaptive Robot-Mediated Intervention Architecture for Autism
个体化自适应机器人介导的自闭症干预架构
基本信息
- 批准号:1264462
- 负责人:
- 金额:$ 31.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Sarkar, Nilanjan and Warren, ZacharyProposal Number: 1264462Project Summary: A novel and transformative robotic intervention technology, called ARIA(Adaptive Robot-mediated Intervention Architecture), with the potential to accelerate social communication skill development for young children with autism spectrum disorders (ASD) is proposed in this research. ARIA will fluidly integrate a humanoid robot, multiple spatially distributed network of cameras, an array of display monitors, as well as a complex but efficient computational face, gaze and gesture detection methodology in order to create a highly flexible and adaptive intelligent environment to potentially advance early joint attention and imitation related skills for young children with ASD. Application of this system will be examined across two user studies with well-defined samples of young children with ASD to provide specific answers and direction to important questions of generalization and potential impact of robotic intervention.Intellectual Merit: The proposed research advances the design and development of intelligent adaptive robotic platforms to offer a potentially transformative intervention application for young children with ASD. The specific technological innovation proposed here has the potential to significantly contribute to new non-invasive and closed-loop human-robot interaction learning paradigms with potential broad extension to individuals with a vast array of neurodevelopmental conditions and limiting sensory vulnerabilities across the lifespan. From the perspective of the science and technology of robotics, the project will contribute towards the design and development of smart environments for learning, intelligent system architecture for adaptive robotics as well as affective computing and control of dynamic human-robot interaction. In particular, it has the potential to significantly contribute towards developing novel efficient applications of computational methods for affective computing, particularly affective computing mediated by non-invasive gaze and attention processing. It will also contribute towards closed loop gesture-based human-robot interaction by developing new methodologies for gesture recognition and adaptive response from the robot. The project will develop a framework and tools to design adaptive environments for enhanced robotic and embodied social interaction that intelligently and fluidly integrates real-time behavioral indices of attentive and gesture information into flexible and controllable response systems. In short, the proposed activity represents a system has the potential to fundamentally advance the engineering knowledge of intelligent human-robotic interaction. This paradigm may also potently impact our understanding of the science of ASD intervention itself. The embedded user studies will test the potential efficacy of robotic intervention on the earliest core symptoms of ASD.Broader Impacts: With the most recent Centers for Disease Control and Prevention (CDC) prevalence estimates for children with ASD at 1 in 88, effective early identification and treatment is often characterized as a public health emergency. The costs of ASD are thought to be enormous across the lifespan, with recent individual incremental lifetime cost projections exceeding $3.2 million and national cost over $35 billion annually. The proposed research explicitly focuses on realizing robotic intervention technologies with potential for improving early ASD related impairments and could have significant beneficial impact on this population. This research may further a technology that can enable all core components of effective intervention at only a fraction of the cost of typical intervention programs, while at the same time increasing the ability of the intervention provider to systematically control and promote intervention related skills targeting individual deficit. The educational activities will train and mentor undergraduate and graduate students in the proposed research, and bring research into classroom through several courses. The outreach activities will include offering research opportunities to high school students, especially among groups currently underrepresented in STEM (science, technology, engineering, and mathematics) fields, and providing high school teachers with research experience during summer. The project offers a strong community connection through formal dissemination to ASD family, clinical, and scientific communities.
主要研究者:Sarkar,Nilanjan和Warren,Zachary提案编号:1264462项目摘要:本研究提出了一种新颖的变革性机器人干预技术,称为ARIA(自适应机器人介导的干预架构),具有加速自闭症谱系障碍(ASD)幼儿社交技能发展的潜力。ARIA将流畅地集成一个人形机器人,多个空间分布的摄像机网络,一系列显示监视器,以及一个复杂但有效的计算面部,凝视和手势检测方法,以创建一个高度灵活和自适应的智能环境,以潜在地提高ASD幼儿的早期联合注意力和模仿相关技能。该系统的应用将在两个用户研究与定义明确的样本与ASD的幼儿提供具体的答案和方向的重要问题的泛化和机器人intervention.Intellectual优点的潜在影响:拟议的研究提出了智能自适应机器人平台的设计和开发,提供一个潜在的变革性干预应用与ASD的幼儿。这里提出的具体技术创新有可能为新的非侵入性和闭环人机交互学习范式做出重大贡献,并有可能广泛扩展到具有大量神经发育条件的个体,并限制整个生命周期的感官脆弱性。从机器人科学和技术的角度来看,该项目将有助于智能学习环境的设计和开发,自适应机器人的智能系统架构以及动态人机交互的情感计算和控制。特别是,它有可能显着有助于开发新的有效的应用程序的计算方法的情感计算,特别是情感计算介导的非侵入性凝视和注意力处理。它还将通过开发用于手势识别和机器人自适应响应的新方法,为基于闭环手势的人机交互做出贡献。该项目将开发一个框架和工具,以设计自适应环境,增强机器人和具体的社会互动,智能和流畅地将注意力和手势信息的实时行为指数集成到灵活和可控的响应系统中。简而言之,拟议的活动代表了一个系统有可能从根本上推进智能人机交互的工程知识。这种范式也可能有力地影响我们对ASD干预本身科学的理解。嵌入式用户研究将测试机器人干预对ASD最早期核心症状的潜在疗效。更广泛的影响:随着疾病控制和预防中心(CDC)最近对ASD儿童患病率的估计为1/88,有效的早期识别和治疗通常被描述为公共卫生紧急情况。ASD的成本被认为是巨大的,最近的个人增量寿命成本预测超过320万美元,国家成本超过350亿美元。拟议的研究明确侧重于实现具有改善早期ASD相关损伤潜力的机器人干预技术,并可能对这一人群产生重大有益影响。这项研究可能会进一步的技术,可以使所有的核心组成部分,有效的干预,只有一小部分的成本典型的干预计划,而在同一时间增加的干预提供者的能力,系统地控制和促进干预相关的技能,针对个人的赤字。教育活动将在拟议的研究中培训和指导本科生和研究生,并通过几门课程将研究带入课堂。外联活动将包括为高中生提供研究机会,特别是目前在STEM(科学,技术,工程和数学)领域代表性不足的群体,并在夏季为高中教师提供研究经验。该项目通过正式传播到ASD家庭,临床和科学界提供了强大的社区联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilanjan Sarkar其他文献
Stress Detection of Autistic Adults during Simulated Job Interviews using a Novel Physiological Dataset and Machine Learning
使用新颖的生理数据集和机器学习在模拟工作面试期间检测自闭症成人的压力
- DOI:
10.1145/3639709 - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Miroslava Migovich;Deeksha Adiani;Michael Breen;A. Swanson;Timothy J. Vogus;Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
An Iterative Participatory Design Approach to Develop Collaborative Augmented Reality Activities for Older Adults in Long-Term Care Facilities
一种迭代参与式设计方法,为长期护理机构中的老年人开发协作增强现实活动
- DOI:
10.1145/3613904.3642595 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Ullal;Mahrukh Tauseef;Alexandra Watkins;Lisa A. Juckett;Cathy A. Maxwell;Judith Tate;Lorraine C. Mion;Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
Analysis of order of redundancy relation for robust actuator fault detection
- DOI:
10.1016/j.conengprac.2009.02.014 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Bibhrajit Halder;Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
Control of Mechanical Systems with Rolling Constraints : Application to Dynamic Control of Mobile Robots MS-CIS-92-44 GRASP LAB 320
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nilanjan Sarkar - 通讯作者:
Nilanjan Sarkar
Poster 8 Sensor-enabled Radio Frequency Identification Tags for Remotely Monitoring Everyday Arm Activity: Sensitivity and Specificity
- DOI:
10.1016/j.apmr.2011.07.030 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:
- 作者:
Joydip Barman;Gitendra Uswatte;Touraj Ghaffari;Nilanjan Sarkar;Brad Sokal;Ezekiel Byrom;Eva Trinh;Christopher Varghese;Michael Brewer;Alan Shih - 通讯作者:
Alan Shih
Nilanjan Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilanjan Sarkar', 18)}}的其他基金
I-Corps: Integrating Complex Augmented Reality Systems in Nursing Education
I-Corps:将复杂的增强现实系统集成到护理教育中
- 批准号:
2349446 - 财政年份:2024
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
SCC-CIVIC-FA Track B: Community Informed AI-Based Vehicle Technology Simulator with Behavioral Strategies to Advance Neurodiverse Independence and Employment
SCC-CIVIC-FA 轨道 B:社区知情的基于人工智能的车辆技术模拟器,具有促进神经多样性独立和就业的行为策略
- 批准号:
2322029 - 财政年份:2023
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Community Informed AI-Based System for Driver Training to Advance Neurodiverse Independence and Employment
SCC-CIVIC-PG 轨道 B:社区知情的基于人工智能的驾驶员培训系统,以促进神经多样化的独立和就业
- 批准号:
2228370 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
SCC-IRG Track 1 Reducing Loneliness for Long Term Care Older Adults through Collaborative Augmented Reality
SCC-IRG 第 1 轨道通过协作增强现实减少长期护理老年人的孤独感
- 批准号:
2225890 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
SCH: Enhanced detection of impending problem behavior in people with intellectual and developmental disabilities through multimodal sensing and machine learning
SCH:通过多模态传感和机器学习增强对智力和发育障碍人士即将出现的问题行为的检测
- 批准号:
2124002 - 财政年份:2021
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I(RAISE): Empowering Neurodiverse Populations for Employment through Inclusion AI and Innovation Science
融合加速器第一阶段(RAISE):通过包容性人工智能和创新科学为神经多样化人群提供就业机会
- 批准号:
1936970 - 财政年份:2019
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
Student Travel Support for 2012 IEEE International Conference on Robotics and Automation
2012 年 IEEE 国际机器人与自动化会议学生旅行支持
- 批准号:
1216519 - 财政年份:2012
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
A Novel Adaptive Transactional Virtual Reality-based Assistive Technology for Autism Intervention
一种用于自闭症干预的新型自适应交易虚拟现实辅助技术
- 批准号:
0967170 - 财政年份:2010
- 资助金额:
$ 31.28万 - 项目类别:
Continuing Grant
SGER: An Affect-Sensitive, Anticipatory Control Framework for Human-Robot Cooperation
SGER:用于人机合作的情感敏感、预期控制框架
- 批准号:
0107775 - 财政年份:2001
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
相似国自然基金
基于人在回路学习的下肢外骨骼机器人个性化步态规划和自适应协同控制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
足式机器人变刚度关节用点阵型构件自适应演变机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智联感知:面向复杂场景的多模态自适应机器人系统研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
曲面脆性件磨抛机器人力位补偿构型及
自适应柔顺控制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
偏瘫患者平衡能力与偏好自适应的拐杖
康复助行机器人研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
时变载荷下四足越野机器人柔性关节用点阵型构件刚度自适应演变机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向工业机器人关节的伺服系统免调整控制方法
- 批准号:QN25E070010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
非结构场景下装配机器人多模态协同感知与自适应抓取策略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
柔性外骨骼机器人“人-机-环”自适应安全交互方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于行为数字化映射模型的机器人社会自适应运动规划
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Adaptive and Efficient Robot Positioning Through Model and Task Fusion
通过模型和任务融合实现自适应且高效的机器人定位
- 批准号:
DE240100149 - 财政年份:2024
- 资助金额:
$ 31.28万 - 项目类别:
Discovery Early Career Researcher Award
ERI: Adaptive and Resilient Communication-Aware Multi-Robot Coordination
ERI:自适应和弹性通信感知多机器人协调
- 批准号:
2301749 - 财政年份:2023
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
Direct Adaptive Coordinated Space Robot Motion Control
直接自适应协调空间机器人运动控制
- 批准号:
573553-2022 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
University Undergraduate Student Research Awards
Adaptive Tuning of Multi-Robot Systems for The Effective Mapping and Tracking of Dynamic Environments
多机器人系统的自适应调整,用于动态环境的有效映射和跟踪
- 批准号:
RGPIN-2022-04064 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Discovery Grants Program - Individual
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Discovery Grants Program - Individual
Development of Adaptive Learning Support Robot Service Ennvironment with Multimodal Multilayered Rule-base
多模态多层规则库自适应学习支持机器人服务环境的开发
- 批准号:
22K02664 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NRI: Collaborative Research: Adaptive multi-Robot Configurable Teams Investigating Changing Ecosystem
NRI:协作研究:自适应多机器人可配置团队调查不断变化的生态系统
- 批准号:
2221648 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Adaptive multi-Robot Configurable Teams Investigating Changing Ecosystem
NRI:协作研究:自适应多机器人可配置团队调查不断变化的生态系统
- 批准号:
2221649 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Standard Grant
Adaptive Action Representation for Biologically Inspired Robot Learning
仿生机器人学习的自适应动作表示
- 批准号:
577720-2022 - 财政年份:2022
- 资助金额:
$ 31.28万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
$ 31.28万 - 项目类别:
Discovery Grants Program - Individual