Tameness in expansions of the real field

真实领域扩张中的驯服

基本信息

  • 批准号:
    1001176
  • 负责人:
  • 金额:
    $ 17.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Miller will continue his research on first-order structures on the field of real numbers, concentrating on further developing the model theory and analytic geometry associated with o-minimal and certain other classes of well-behaved structures on the field of real numbers. He intends to do this by applying techniques from descriptive set theory and geometric measure theory in addition to the model-theoretic and analytic-geometric techniques usually associated with o-minimality. In turn, Miller hopes to apply model-theoretic techniques to obtain results in control theory (specifically, classifying expansions of structures on the real field by trajectories of definable vector fields), descriptive set theory, and geometric measure theory.Many results of classical mathematics are very general: They apply to a wide range of input, so to speak, and thus tend to produce a wide range of output. But one could hope that if the input is particularly well behaved in some respect, then the output would be similarly well behaved. This turns out to be true in many important cases, but usually requires new, more constructive, proofs of classical results, as well as a deeper understanding of which inputs should be regarded as well behaved. The theory of o-minimal structures on the real field, a sub-discipline of mathematical logic, has been developed in large part to deal with this issue. This has been a rapidly-developing area for the last twenty-five years, with many contributions from, and cooperation between, researchers from several branches of mathematics and logic. Applications have been found in areas as diverse as theoretical economics, neural-net learning theory, and hybrid control systems, as well as in pure mathematics. However, o-minimality has a drawback: It allows only for the modelling of locally finitely connected behavior, and thus has rather limited use in understanding noisy or oscillatory settings. Miller proposes to develop extensions of o-minimality that can deal with at least some of these non-o-minimal phenomena.
米勒将继续他的研究一阶结构领域的真实的数字,集中在进一步发展模型理论和解析几何与o-最小和某些其他类别的良好表现的结构领域的真实的数字。他打算这样做的应用技术从描述集理论和几何措施理论除了模型理论和分析几何技术通常与o-极小。反过来,米勒希望应用模型理论的技术来获得控制理论(具体地说,通过可定义向量场的轨迹对真实的域上的结构展开进行分类)、描述集合论和几何测度论中的结果。经典数学的许多结果都非常普遍:可以说,它们适用于广泛的输入,因此往往会产生广泛的输出。但是,如果输入在某些方面表现得特别好,那么输出也会表现得同样好。这在许多重要的情况下都是正确的,但通常需要对经典结果进行新的、更有建设性的证明,以及更深入地理解哪些输入应该被视为行为良好。真实的域上的o-极小结构理论是数理逻辑的一个分支学科,它的发展在很大程度上就是为了解决这个问题。这是一个快速发展的领域,在过去的二十五年里,有许多贡献,并合作,研究人员从几个分支的数学和逻辑。应用领域广泛,如理论经济学、神经网络学习理论、混合控制系统以及纯数学。然而,o-极小性有一个缺点:它只允许对局部连通行为进行建模,因此在理解噪声或振荡设置方面的用途相当有限。米勒建议开发的O-极小的扩展,可以处理至少有一些这些非O-极小的现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Miller其他文献

Towards a Multi-Entity Aspect-Based Sentiment Analysis for Characterizing Directed Social Regard in Online Messaging
面向多实体基于方面的情感分析,用于表征在线消息传递中的定向社会关注
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joan Zheng;Scott E. Friedman;S. Schmer;Ian H. Magnusson;Ruta Wheelock;Jeremy Gottlieb;Diana Gomez;Christopher Miller
  • 通讯作者:
    Christopher Miller
The Potassium Channel of Sarcoplasmic Reticulum
肌浆网钾通道
Assessment of variables that influence agreement between reviewers for Foot & Ankle International.
评估影响 Foot 评审者之间一致性的变量
Cytocompatibility of Magnesium-Zinc-Calcium Alloys with Bone Marrow Derived Mesenchymal Stem Cells
镁锌钙合金与骨髓间充质干细胞的细胞相容性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aaron F. Cipriano;Christopher Miller;H. Liu
  • 通讯作者:
    H. Liu
THE FORGOTTEN BONDS: THE ASSESSMENT AND CONTEMPLATION OF SIBLING ATTACHMENT IN DIVORCE AND PARENTAL SEPARATION
被遗忘的纽带:离婚和父母分居中兄弟姐妹依恋的评估和思考
  • DOI:
    10.1111/j.1744-1617.2010.01352.x
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    D. Shumaker;Christopher Miller;Carolyn Ortiz;R. Deutsch
  • 通讯作者:
    R. Deutsch

Christopher Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Miller', 18)}}的其他基金

Structural and functional studies of the VAPB-PTPIP51 ER-mitochondria tethering proteins in neurodegenerative diseases
神经退行性疾病中 VAPB-PTPIP51 ER 线粒体束缚蛋白的结构和功能研究
  • 批准号:
    MR/X021858/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Research Grant
Model Theory of Valued Differential Fields
值微分场模型论
  • 批准号:
    2154086
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Continuing Grant
Studying the role of TDP-43 induced damage to the VAPB-PTPIP51 ER-mitochondria tethers in fronto-temporal dementia/amyotrophic lateral sclerosis
研究 TDP-43 诱导的 VAPB-PTPIP51 ER 线粒体连接损伤在额颞叶痴呆/肌萎缩侧索硬化症中的作用
  • 批准号:
    MR/R022666/1
  • 财政年份:
    2018
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Research Grant
Dissertation Research: Intra-population genomic and metabolic diversity among understudied archaea in methane-cycling wetlands
论文研究:甲烷循环湿地中待研究古细菌的种群内基因组和代谢多样性
  • 批准号:
    1701970
  • 财政年份:
    2017
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Lemur tyrosine kinase-2 and axonal transport of cdk5/p35 and protein phosphatase-1
狐猴酪氨酸激酶 2 和 cdk5/p35 和蛋白磷酸酶 1 的轴突运输
  • 批准号:
    BB/L019299/1
  • 财政年份:
    2014
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Research Grant
Travel Grant Support for IEEE ICCCN 2013 Conference
IEEE ICCCN 2013 会议差旅补助支持
  • 批准号:
    1341327
  • 财政年份:
    2013
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
U.S. participation in "O-minimal Structures and Real Analytic Geometry"
美国参与“O-最小结构与实解析几何”
  • 批准号:
    0753096
  • 财政年份:
    2008
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Axonal transport, protein trafficking and neurological disease
轴突运输、蛋白质运输和神经系统疾病
  • 批准号:
    G0501573/1
  • 财政年份:
    2006
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Research Grant
Real analytic geometry and model theory
实解析几何与模型理论
  • 批准号:
    9988855
  • 财政年份:
    2000
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Real Analytic Geometry and Model Theory
数学科学:实解析几​​何和模型理论
  • 批准号:
    9704594
  • 财政年份:
    1997
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant

相似海外基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Standard Grant
Using advanced genomic and computational approaches to discover and characterize novel genetic variants in neurodevelopmental disorders.
使用先进的基因组和计算方法来发现和表征神经发育障碍中的新遗传变异。
  • 批准号:
    491213
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Fellowship Programs
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
  • 批准号:
    10776994
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
Spillover Effects of Medicaid Dental Coverage Expansions on Health Status
医疗补助牙科覆盖范围扩大对健康状况的溢出效应
  • 批准号:
    10590847
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
Pre-clinical studies of a small-molecule to reverse neurodegenerative disease-causing mutations for its commercialization and application
逆转神经退行性疾病引起的突变的小分子的临床前研究及其商业化和应用
  • 批准号:
    490424
  • 财政年份:
    2023
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Operating Grants
Empirical study of the political effect on institutional expansions in secondary education: A case of the Philippines
政治对中等教育制度扩张影响的实证研究:以菲律宾为例
  • 批准号:
    22K13394
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Effects of Scholarship on Student's Learning Behavior Focusing on PreferenceDevelopments and Expansions of Behavioral Economics Approach
奖学金对学生学习行为的影响关注偏好行为经济学方法的发展和扩展
  • 批准号:
    22K13722
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel approaches to identify tandem repeat expansions in neurodegenerative disease
识别神经退行性疾病串联重复扩增的新方法
  • 批准号:
    10440935
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
  • 批准号:
    10439166
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
  • 批准号:
    10796593
  • 财政年份:
    2022
  • 资助金额:
    $ 17.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了