Ecology, Evolution, and Random Graphs
生态学、进化和随机图
基本信息
- 批准号:1057675
- 负责人:
- 金额:$ 34.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research will be carried out on three topics: stochastic spatial models, processes taking place on random graphs, and questions related to the evolution of biological systems. Three of the proposed questions in the first topic concern "When can species coexist", while a fourth concerns the possibility that the quadratic contact process in two dimensions can have two phase transitions one for the existence of stationary distributions and a larger one for survival from a finite set. In the second topic one interesting mathematical problem concerns "explosive percolation" conjectured to have a discontinuous transition, while the more biologically important question concerns how the outcomes of epidemics and ecological competitions change when they take place on random graphs, which arguably provide better models of the real social networks. The third topic concern situations in which the characteristics of individuals in ecological competitions are also not static but evolve in response to their environment. My first steps in the area "adaptive dynamics" were taken in a study of predator-prey systems with John Mayberry. Here, we propose to study more complex examples that lead to evolutionary cycling and a second problem on the evolution of virulence, which leads to consideration of the role of spatial structure in increasing the virulence of diseases.Many interesting mathematical questions arise from biology. Here we address some questions that arise from ecology and evolution. Three examples should illustrate the nature of our work. (1) At the turn of the century, observations of social networks revealed that we live in a small world in which everyone on the planet is separated by six degrees of separation. Now we need to understand how this geometry of social networks effects the spread of epidemics and the other biological and social processes. (2) The world shows much more biodiversity than mathematical models predict, so it is important to understand the mechanisms which allow for species coexistence. More generally, we will also be interested in how spatial structure changes the outcome of ecological competition. (3) In most situations the characteristics of individuals involved in competition with other species or with infectious agents are not static but evolve in time. For example, in most cases diseases evolve to be less virulent, but in a spatially structured population the opposite may occur. Co-evolution of hosts and parasites can lead to interesting evolutionary cycling, sometimes called ?Red Queen Dynamics after the character in Alice in Wonderland who has to keep running to stay in the same place.
研究将进行三个主题:随机空间模型,随机图上发生的过程,以及与生物系统进化有关的问题。在第一个主题中提出的三个问题涉及“物种何时可以共存”,而第四个问题则涉及二维二次接触过程可能有两个相变的可能性,一个是存在固定分布的相变,另一个是从有限集合中生存的相变。在第二个主题中,一个有趣的数学问题涉及“爆炸性渗流”,它被证明具有不连续的过渡,而生物学上更重要的问题则涉及流行病和生态竞争的结果在随机图上发生时如何变化,这可以说是真实的社交网络的更好模型。第三个主题涉及的情况下,在生态竞争中的个人的特点也不是静态的,但在响应他们的环境演变。我在“适应性动力学”领域的第一步是在与约翰·梅伯里(John Mayberry)一起研究捕食者-猎物系统时迈出的。在这里,我们建议研究更复杂的例子,导致进化循环和第二个问题的毒力的演变,这导致考虑的作用,空间结构在增加疾病的毒力。在这里,我们解决一些问题,从生态学和进化。三个例子可以说明我们工作的性质。(1)在世纪之交,对社交网络的观察显示,我们生活在一个小世界里,地球上的每个人都被六度分隔。现在我们需要了解这种社交网络的几何结构如何影响流行病的传播以及其他生物和社会过程。(2)世界上的生物多样性比数学模型预测的要多得多,因此了解物种共存的机制非常重要。更一般地说,我们还对空间结构如何改变生态竞争的结果感兴趣。(3)在大多数情况下,参与与其他物种或感染因子竞争的个体的特征不是静态的,而是随着时间的推移而演变的。例如,在大多数情况下,疾病的毒性会降低,但在空间结构化的人群中,情况可能正好相反。宿主和寄生虫的共同进化可以导致有趣的进化循环,有时称为?红皇后动力学在爱丽丝梦游仙境中的角色之后,他必须保持奔跑才能留在同一个地方。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Durrett其他文献
Multidimensional random walks in random environments with subclassical limiting behavior
- DOI:
10.1007/bf01210794 - 发表时间:
1986-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Richard Durrett - 通讯作者:
Richard Durrett
Some general results concerning the critical exponents of percolation processes
- DOI:
10.1007/bf00532742 - 发表时间:
1985-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Richard Durrett - 通讯作者:
Richard Durrett
Random walk in random environment: A counterexample?
- DOI:
10.1007/bf01217738 - 发表时间:
1988-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Maury Bramson;Richard Durrett - 通讯作者:
Richard Durrett
Some rigorous results for the Greenberg-Hastings Model
- DOI:
10.1007/bf01259549 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Richard Durrett;Jeffrey E. Steif - 通讯作者:
Jeffrey E. Steif
Ergodicity of reversible reaction diffusion processes
- DOI:
10.1007/bf01377624 - 发表时间:
1990-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Wan-Ding Ding;Richard Durrett;Thomas M. Liggett - 通讯作者:
Thomas M. Liggett
Richard Durrett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Durrett', 18)}}的其他基金
Four Challenging Questions in Probability
四个具有挑战性的概率问题
- 批准号:
2153429 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别:
Continuing Grant
Support for the Southeastern Probability Conference
支持东南概率会议
- 批准号:
2011385 - 财政年份:2020
- 资助金额:
$ 34.97万 - 项目类别:
Continuing Grant
Voters, Games, and Epidemics on Random Graphs
随机图上的选民、游戏和流行病
- 批准号:
1809967 - 财政年份:2018
- 资助金额:
$ 34.97万 - 项目类别:
Continuing Grant
Mathematical Analysis of Spatial Cancer Models
空间癌症模型的数学分析
- 批准号:
1614838 - 财政年份:2016
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Spatial Interactions in Determining the Distribution of Savanna and Forest
合作研究:空间相互作用在确定稀树草原和森林分布中的作用
- 批准号:
1614978 - 财政年份:2016
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
Interacting Particle Systems on Lattices and on Graphs
格子和图上相互作用的粒子系统
- 批准号:
1505215 - 财政年份:2015
- 资助金额:
$ 34.97万 - 项目类别:
Continuing Grant
Stochastic Spatial Models: on Complex Networks, Coevolution, and Modeling Cancer
随机空间模型:关于复杂网络、共同进化和癌症建模
- 批准号:
1305997 - 财政年份:2013
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
Biodiversity and Evolution-Support for U.S. Participants
为美国参与者提供的生物多样性和进化支持
- 批准号:
1331778 - 财政年份:2013
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
Participant Support for Workshop for Women in Probability 2012
2012 年女性概率研讨会参与者支持
- 批准号:
1242092 - 财政年份:2012
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
Ecology, Evolution, and Random Graphs
生态学、进化和随机图
- 批准号:
1005470 - 财政年份:2010
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A statistical framework for the analysis of the evolution in shape and topological structure of random objects
用于分析随机物体形状和拓扑结构演化的统计框架
- 批准号:
2311338 - 财政年份:2023
- 资助金额:
$ 34.97万 - 项目类别:
Standard Grant
CAREER: Understanding the Evolution of Random Graphs with Complex Dependencies: Phase Transition and Beyond
职业:理解具有复杂依赖性的随机图的演化:相变及其他
- 批准号:
2225631 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别:
Continuing Grant
Towards a thermophilic strain of Escherichia coli: Combining powerful rational and random approaches for laboratory evolution
走向嗜热大肠杆菌菌株:结合强大的理性和随机方法进行实验室进化
- 批准号:
559688-2021 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Towards a thermophilic strain of Escherichia coli: Combining powerful rational and random approaches for laboratory evolution
走向嗜热大肠杆菌菌株:结合强大的理性和随机方法进行实验室进化
- 批准号:
559688-2021 - 财政年份:2021
- 资助金额:
$ 34.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Understanding the Evolution of Random Graphs with Complex Dependencies: Phase Transition and Beyond
职业:理解具有复杂依赖性的随机图的演化:相变及其他
- 批准号:
1945481 - 财政年份:2020
- 资助金额:
$ 34.97万 - 项目类别:
Continuing Grant
Stochastic evolution in random environment and its phase transition
随机环境中的随机演化及其相变
- 批准号:
17K05295 - 财政年份:2017
- 资助金额:
$ 34.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effective properties of interface evolution in a random environment
随机环境中界面演化的有效性质
- 批准号:
EP/M028607/1 - 财政年份:2016
- 资助金额:
$ 34.97万 - 项目类别:
Research Grant
Effective properties of interface evolution in a random environment
随机环境中界面演化的有效性质
- 批准号:
EP/M028682/1 - 财政年份:2016
- 资助金额:
$ 34.97万 - 项目类别:
Research Grant
On a p-Laplace type evolution equation with random variable exponent and a stochastic force
具有随机变量指数和随机力的p-拉普拉斯型演化方程
- 批准号:
259634327 - 财政年份:2014
- 资助金额:
$ 34.97万 - 项目类别:
Research Grants