Smooth 4-Manifolds

平滑 4 歧管

基本信息

  • 批准号:
    1006322
  • 负责人:
  • 金额:
    $ 23.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-15 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

One of the central problems of low-dimensional topology is the classification of smooth simply connected 4-manifolds. In this direction, a basic question is whether any topological simply connected 4-manifold which admits a smooth structure in fact admits infinitely many. The PI's previous work with R. Stern developed a technique called 'reverse engineering' which can be used to attack this problem. This technique depends on the existence of 'model manifolds' or equivalently the discovery of embedded nullhomologous tori on which surgery can be performed. Until recently, there have been no explicit techniques for finding such tori. However, in the past year, R. Stern and the P.I. have discovered techniques for finding these tori in standard 4-manifolds. This proposal explains how this is done in (2 or more) blowups of CP^2. The embedded nullhomologous tori which are produced can be surgered to create infinite families of homeomorphic but mutually nondiffeomorphic 4-manifolds. The next task is to carry out Floer homology and relative Seiberg-Witten calculations so that our technique can become useful in its most general form.The broader impact of this proposal will address the relationship between mathematics and theoretical physics, opportunities for graduate and undergraduate students in topology, and career development of postdoctoral fellows. Four-dimensional geometry and topology has very close ties to physics. For example, the proposer will study geography problems for symplectic manifolds which have been shown to impact physics via the notion of 'superconformal simple type'. Any general results concerning Seiberg-Witten theory hold the prospect of engendering interaction with the physics community, and this will be a basic concern. The search for exotic 4-manifolds has been embraced by the theoretical physics community, and new results on this front will also serve to enhance this relationship. Another basic goal of this proposal is to address 'pipeline issues' in mathematics. Our approach is to to get students and young mathematicians working on interesting problems. A key aspect of this proposal is the development of problems which are accessible to graduate and advanced undergraduate students. It presents problems which will be suitable thesis problems for students and research projects for postdoctoral fellows at Michigan State. It also discusses computational problems which are suitable for advanced undergraduate students.
低维拓扑学的中心问题之一是光滑单连通4-流形的分类。在这个方向上,一个基本的问题是,任何拓扑单连通4-流形,它承认一个光滑的结构,实际上是否允许无限多。PI以前的工作与R。斯特恩开发了一种称为“逆向工程”的技术,可以用来解决这个问题。这种技术依赖于存在的“模型流形”或等价的发现嵌入nullhomologous环面上可以进行手术。直到最近,还没有明确的技术来寻找这样的环面。然而,在过去的一年里,R.斯特恩和私家侦探已经发现了在标准四维流形中找到这些环面的技术。这个建议解释了如何在CP ^2的(2个或更多)爆破中做到这一点。所产生的嵌入的零同调环面可以被surgered以创建同胚但互不同胚的无穷族4-流形。下一个任务是进行Floer同源性和相对的Seiberg-Witten计算,使我们的技术可以成为有用的,在其最一般的form.The更广泛的影响,这一建议将解决数学和理论物理之间的关系,研究生和本科生的拓扑学的机会,和博士后研究员的职业发展。四维几何和拓扑学与物理学有着非常密切的联系。例如,提议者将研究辛流形的地理问题,这些问题已被证明通过“超共形简单型”的概念影响物理学。任何关于Seiberg-Witten理论的一般性结果都具有与物理学界产生相互作用的前景,这将是一个基本的问题。对奇异四维流形的研究已经被理论物理学界所接受,这方面的新结果也将有助于加强这种关系。这个建议的另一个基本目标是解决数学中的“管道问题”。我们的方法是让学生和年轻的数学家研究有趣的问题。这项建议的一个关键方面是研究生和高级本科生可以访问的问题的发展。它提出的问题,这将是合适的论文问题的学生和博士后研究项目在密歇根州立大学。并讨论了适合于高年级本科生的计算问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronald Fintushel其他文献

Singular circle fiberings
  • DOI:
    10.1007/bf01174727
  • 发表时间:
    1976-02-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Allan L. Edmonds;Ronald Fintushel
  • 通讯作者:
    Ronald Fintushel
Correction to: Constructing lens spaces by surgery on knots
  • DOI:
    10.1007/bf01218377
  • 发表时间:
    1981-03-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Ronald Fintushel;Ronald Stern
  • 通讯作者:
    Ronald Stern

Ronald Fintushel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronald Fintushel', 18)}}的其他基金

EMSW21-RTG Research Training in Geometry and Topology at Michigan State University
密歇根州立大学几何和拓扑学 EMSW21-RTG 研究培训
  • 批准号:
    0739208
  • 财政年份:
    2008
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Smooth 4-Manifolds
平滑 4 歧管
  • 批准号:
    0704091
  • 财政年份:
    2007
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
EMSW21-RTG Research Training in Geometry and Topology at Michigan State University
密歇根州立大学几何和拓扑学 EMSW21-RTG 研究培训
  • 批准号:
    0353717
  • 财政年份:
    2004
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Standard Grant
Topics in Smooth and Symplectic 4-Manifolds
光滑和辛 4 流形中的主题
  • 批准号:
    0305818
  • 财政年份:
    2003
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Great Lakes Geometry Conference
五大湖几何会议
  • 批准号:
    9985994
  • 财政年份:
    2000
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Standard Grant
Smooth and Symplectic 4-Manifolds
光滑和辛 4 流形
  • 批准号:
    0072212
  • 财政年份:
    2000
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Smooth 4-Manifolds
数学科学:光滑 4 流形
  • 批准号:
    9704927
  • 财政年份:
    1997
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Smooth 4-Manifolds and Their Donaldson Series
数学科学:光滑 4 流形及其唐纳森级数
  • 批准号:
    9401032
  • 财政年份:
    1994
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Gauge Theory and 4-Manifolds
数学科学:规范理论和 4 流形
  • 批准号:
    9102522
  • 财政年份:
    1991
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: 4-Manifolds and Homology 3-Spheres
数学科学:4-流形和同调 3-球体
  • 批准号:
    8802412
  • 财政年份:
    1988
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant

相似海外基金

Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    2247572
  • 财政年份:
    2023
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Standard Grant
Understanding Smooth Structures via Regular Homotopy of Surfaces in 4-Manifolds
通过 4 流形中曲面的正同伦了解光滑结构
  • 批准号:
    2204367
  • 财政年份:
    2022
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Standard Grant
Algebraic K-Theory in Fixed-Point Theory and Smooth Manifolds
定点理论和光滑流形中的代数 K 理论
  • 批准号:
    2005524
  • 财政年份:
    2020
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Standard Grant
Smooth 4-Manifolds: 2-3, 5- and 6-Dimensional Perspectives
平滑 4 流形:2-3、5 和 6 维视角
  • 批准号:
    2005554
  • 财政年份:
    2020
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
  • 批准号:
    2003892
  • 财政年份:
    2020
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    1956310
  • 财政年份:
    2020
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Continuing Grant
Differential geometric structures on smooth manifolds and Gromov-Hausdorff convergences
光滑流形上的微分几何结构和 Gromov-Hausdorff 收敛性
  • 批准号:
    19K03474
  • 财政年份:
    2019
  • 资助金额:
    $ 23.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了