Mathematical Sciences: Smooth 4-Manifolds and Their Donaldson Series
数学科学:光滑 4 流形及其唐纳森级数
基本信息
- 批准号:9401032
- 负责人:
- 金额:$ 11.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-15 至 1998-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9401032 Fintushel The main concern of this project is to study smooth simply connected 4-manifolds by using invariants obtained from gauge theory. This has three parts. The first is to understand the structure theory of the invariants themselves. For manifolds of simple type, this has been accomplished by Kronheimer and Mrowka and, using completely different techniques, by the investigator and R. Stern. The investigator and R. Stern have also proved a blowup formula for the Donaldson invariant of a general 4-manifold, and one expects that this formula, together with the techniques used in the simple-type case, will lead to a general structure theory. The second part of this project is the calculation of Donaldson invariants. The investigator intends to use his technique of 'rational blowdowns' to provide calculations. This involves giving a general formula for the Donaldson invariant of a rational blowdown, which has essentially been done by the investigator and R. Stern (some details remain to be checked) and which leads, e.g., to the calculation of complete Donaldson invariants for all elliptic surfaces and many other interesting examples. The final part of the project is to produce new examples to which these invariants can be applied in order to find some order in the classification theory. Four-dimensional manifolds are spaces which locally have the structure of 4-dimensional Euclidean space (e.g. 3 'spatial' and one 'time' dimension). These manifolds play a central role in topology, for in 4 dimensions both the powerful techniques of higher dimensional surgery and the more special and intricate techniques of lower dimensions break down. This is, of course, also the most physically relevant situation, and there is a vast literature in theoretical physics related to 4-dimensional topology. For many years 4-manifolds were studied by applying techniques from both higher and lower dimensions, and the results were mostly unsatisfactory. In 1 984, Simon Donaldson introduced a powerful technique stemming from the interplay between 4-dimensional geometry and theoretical physics via the Yang-Mills equation. Donaldson's techniques have had startling consequences, and a school of topologists and geometers has formed in the hope of using these techniques to understand 4-dimensional topology completely. (That this is not too far removed from the physics which helped spawn the theory is evidenced by the many contributions by physicists such as Witten.) In the last year, especially, progress has been very rapid. The investigator hopes to make further contributions both to the understanding of the Donaldson invariant and to the classification of 4-dimensional manifolds. ***
本课题的主要目的是利用规范论的不变量研究光滑单连通4流形。这有三个部分。首先是理解不变量本身的结构理论。对于简单型流形,Kronheimer和Mrowka已经完成了这一点,研究者和R. Stern使用了完全不同的技术。研究者和R. Stern还证明了一般4流形的Donaldson不变量的放大公式,人们期望该公式与在简单类型情况下使用的技术一起,将导致一般结构理论。本课题的第二部分是唐纳森不变量的计算。研究者打算使用他的“理性吹落”技术来提供计算。这涉及到给出一个理性下倾的Donaldson不变量的一般公式,这基本上是由研究者和R. Stern完成的(一些细节仍有待检查),并且导致,例如,计算所有椭圆曲面的完全Donaldson不变量和许多其他有趣的例子。项目的最后一部分是产生新的例子,这些不变量可以应用到这些例子中,以便在分类理论中找到一些顺序。四维流形是局部具有四维欧几里得空间结构的空间(例如3维“空间”和1维“时间”)。这些流形在拓扑学中起着核心作用,因为在4维中,高维手术的强大技术和更特殊、更复杂的低维技术都失效了。当然,这也是物理上最相关的情况,在理论物理中有大量与四维拓扑相关的文献。多年来,人们从高维和低维两方面对四流形进行了研究,结果大多不令人满意。1984年,西蒙·唐纳森通过杨-米尔斯方程引入了一种源于四维几何和理论物理相互作用的强大技术。唐纳森的技术产生了惊人的结果,一个由拓扑学家和几何学家组成的学派已经形成,希望利用这些技术来完全理解四维拓扑。(这与催生这一理论的物理学并没有太大的差距,这一点可以从威滕等物理学家的许多贡献中得到证明。)特别是去年,进展非常迅速。研究者希望对Donaldson不变量的理解和四维流形的分类做出进一步的贡献。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Fintushel其他文献
Singular circle fiberings
- DOI:
10.1007/bf01174727 - 发表时间:
1976-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Allan L. Edmonds;Ronald Fintushel - 通讯作者:
Ronald Fintushel
Correction to: Constructing lens spaces by surgery on knots
- DOI:
10.1007/bf01218377 - 发表时间:
1981-03-01 - 期刊:
- 影响因子:1.000
- 作者:
Ronald Fintushel;Ronald Stern - 通讯作者:
Ronald Stern
Ronald Fintushel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Fintushel', 18)}}的其他基金
EMSW21-RTG Research Training in Geometry and Topology at Michigan State University
密歇根州立大学几何和拓扑学 EMSW21-RTG 研究培训
- 批准号:
0739208 - 财政年份:2008
- 资助金额:
$ 11.7万 - 项目类别:
Continuing Grant
EMSW21-RTG Research Training in Geometry and Topology at Michigan State University
密歇根州立大学几何和拓扑学 EMSW21-RTG 研究培训
- 批准号:
0353717 - 财政年份:2004
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Topics in Smooth and Symplectic 4-Manifolds
光滑和辛 4 流形中的主题
- 批准号:
0305818 - 财政年份:2003
- 资助金额:
$ 11.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Smooth 4-Manifolds
数学科学:光滑 4 流形
- 批准号:
9704927 - 财政年份:1997
- 资助金额:
$ 11.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Gauge Theory and 4-Manifolds
数学科学:规范理论和 4 流形
- 批准号:
9102522 - 财政年份:1991
- 资助金额:
$ 11.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: 4-Manifolds and Homology 3-Spheres
数学科学:4-流形和同调 3-球体
- 批准号:
8802412 - 财政年份:1988
- 资助金额:
$ 11.7万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Minorities in Mathematical Sciences: A Pilot Project
数学科学领域代表性不足的少数群体顺利过渡到研究生教育 (STAGE):试点项目
- 批准号:
1043223 - 财政年份:2011
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Equivalence of dynamical systems under smooth changes of variables and rigidity - Summer 2001
NSF/CBMS 数学科学区域会议 - 变量和刚度平滑变化下动力系统的等效性 - 2001 年夏季
- 批准号:
0086155 - 财政年份:2001
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences--The existence and non-existence of periodic orbits in smooth dynamical systems--July 10-14, 2000
CBMS 数学科学区域会议——光滑动力系统中周期轨道的存在与不存在——2000 年 7 月 10-14 日
- 批准号:
9978848 - 财政年份:2000
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Smooth 4-Manifolds
数学科学:光滑 4 流形
- 批准号:
9704927 - 财政年份:1997
- 资助金额:
$ 11.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Structure of Smooth 4-Manifolds
数学科学:光滑 4 流形的结构
- 批准号:
9626330 - 财政年份:1996
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytic and Geometric Questions for Smooth Group Actions
数学科学:平稳群体行动的分析和几何问题
- 批准号:
9623109 - 财政年份:1996
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Smooth Representations of Reductive P-Adic Groups via G-Types
数学科学:通过 G 类型平滑表示还原 P-Adic 群
- 批准号:
9623288 - 财政年份:1996
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology of Smooth 4-Manifolds
数学科学:光滑 4 流形拓扑
- 批准号:
9626204 - 财政年份:1996
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Smooth Dynamical Systems and Dimension Theory
数学科学:光滑动力系统和维度理论
- 批准号:
9403724 - 财政年份:1994
- 资助金额:
$ 11.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Smooth Structures of Algebraic Surfaces
数学科学:代数曲面的光滑结构
- 批准号:
9400729 - 财政年份:1994
- 资助金额:
$ 11.7万 - 项目类别:
Standard Grant














{{item.name}}会员




