HARMONICITY AND RIGIDITY OF DISCRETE AND ARITHMETIC GROUPS
离散群和算术群的调和性和刚性
基本信息
- 批准号:1007227
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal aim of the proposed activity is to enhance research in the rigidity theory of discrete groups, with particular emphasis on the important class of arithmetic groups. Substantial parts of the research aim to sharpen, recast and unify diverse results in the theory of arithmetic groups into one novel setting, through a concrete general conjecture, with particular emphasis on the 30-year old Margulis-Zimmer conjecture (concerning the structure of commensurated subgroups), as a special case. A key notion in the proposed work is that of harmonicity, which emerges as central ingredient in relation to thisconjecture, as well as in a different suggested direction of rigidity pertaining to Lipschitz harmonic functions on groups (motivated by their use in recent joint work of the PI with Terry Tao).The theory of so-called arithmetic groups is one of the deepest, most beautiful, fruitful, and long studied ones in modern mathematics. It involves most fields of pure mathematics, from the algebraic side of representation, number, and K-theory, through geometry in its various forms, to the analytic side of ergodic theory and dynamics. The proposed work aims to address some fundamental issues and suggest a recast of parts of the theory, thereby shedding new light and enhancing new developments in the field. Of particular emphasis is a 30-year old conjecture due to Gregory Margulis and Robert Zimmer. Its resolution is expected to involve new dynamical ideas, which are strongly related to harmonicity (roughly speaking, a state which is stable under averaging). Novel investigations and applications of harmonicity are expected to bring progress in other directions of the proposed work.
拟议活动的主要目的是加强离散群刚性理论的研究,特别强调算术群这一重要类别。该研究的实质部分旨在通过具体的一般猜想,将算术群理论中的各种结果锐化、重铸和统一到一个新的环境中,特别强调30年前的马古利斯-齐默猜想(关于代数子群的结构)作为特例。一个关键的概念,在拟议的工作是调和性,这是出现的核心成分有关thisconjecture,以及在不同的建议方向的刚性有关的Lipschitz调和函数的群体(动机是他们在PI与Terry Tao最近的联合工作中的使用)。所谓的算术群理论是最深刻的,最美丽的,富有成果的,以及长期研究现代数学的数学。它涉及纯数学的大多数领域,从代数方面的代表性,数量和K理论,通过几何的各种形式,分析方面的遍历理论和动力学。拟议的工作旨在解决一些基本问题,并建议对理论的部分内容进行重铸,从而为该领域带来新的启发并促进新的发展。特别强调的是一个30岁的猜想,由于格雷戈里马古利斯和罗伯特齐默。它的解决方案预计将涉及新的动力学思想,这是密切相关的调和性(粗略地说,一个国家是稳定的平均)。新的调查和应用的谐波预计将带来进展的其他方向的拟议工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yehuda Shalom其他文献
Yehuda Shalom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yehuda Shalom', 18)}}的其他基金
Arithmetic groups, universal lattices and Kazhdan's property (T)
算术群、通用格和 Kazhdan 性质 (T)
- 批准号:
0701639 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
- 批准号:
2339110 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
- 批准号:
10656057 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
- 批准号:
2305411 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Discovery Early Career Researcher Award
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
- 批准号:
23K12969 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Constraints, Rigidity, and Risk in Global Supply Chains
全球供应链的约束、刚性和风险
- 批准号:
2315629 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
- 批准号:
2304684 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
- 批准号:
2304697 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant